
    $6                    $   S r SSKJr  SSKJr  SSKJr  SSKJr  Sr	 " S S\R                  5      r " S	 S
\R                  5      r " S S\R                  5      r " S S\R                  5      r " S S\R                  5      r " S S\R                  5      r " S S\R                  5      r " S S\R                  5      r " S S\R                  5      r " S S\R                  5      r " S S\R                  5      r " S S\R                  5      r " S S \R                  5      r " S! S"\R                  5      r " S# S$\R                  5      r " S% S&\R                  5      r " S' S(\R                  5      r " S) S*\R                  5      r " S+ S,\R                  5      r " S- S.\R                  5      r " S/ S0\R                  5      r " S1 S2\R                  5      r  " S3 S4\R                  5      r! " S5 S6\R                  5      r" " S7 S8\R                  5      r# " S9 S:\R                  5      r$ " S; S<\R                  5      r% " S= S>\R                  5      r& " S? S@\R                  5      r' " SA SB\R                  5      r( " SC SD\R                  5      r) " SE SF\R                  5      r* " SG SH\R                  5      r+ " SI SJ\R                  5      r, " SK SL\R                  5      r- " SM SN\R                  5      r. " SO SP\R                  5      r/ " SQ SR\R                  5      r0 " SS ST\R                  5      r1 " SU SV\R                  5      r2 " SW SX\R                  5      r3 " SY SZ\R                  5      r4 " S[ S\\R                  5      r5 " S] S^\R                  5      r6 " S_ S`\R                  5      r7 " Sa Sb\R                  5      r8 " Sc Sd\R                  5      r9 " Se Sf\R                  5      r: " Sg Sh\R                  5      r; " Si Sj\R                  5      r< " Sk Sl\R                  5      r= " Sm Sn\R                  5      r> " So Sp\R                  5      r? " Sq Sr\R                  5      r@ " Ss St\R                  5      rA " Su Sv\R                  5      rB " Sw Sx\R                  5      rC " Sy Sz\R                  5      rD " S{ S|\R                  5      rE " S} S~\R                  5      rF " S S\R                  5      rG " S S\R                  5      rH " S S\R                  5      rI " S S\R                  5      rJ " S S\R                  5      rK " S S\R                  5      rL " S S\R                  5      rM " S S\R                  5      rN " S S\R                  5      rO " S S\R                  5      rP " S S\R                  5      rQ " S S\R                  5      rR " S S\R                  5      rS " S S\R                  5      rT " S S\R                  5      rU " S S\R                  5      rV " S S\R                  5      rW " S S\R                  5      rX " S S\R                  5      rY " S S\R                  5      rZ " S S\R                  5      r[ " S S\R                  5      r\ " S S\R                  5      r] " S S\R                  5      r^ " S S\R                  5      r_ " S S\R                  5      r` " S S\R                  5      ra " S S\R                  5      rb " S S\R                  5      rc " S S\R                  5      rd " S S\R                  5      re " S S\R                  5      rf " S S\R                  5      rg " S S\R                  5      rh " S S\R                  5      ri " S S\R                  5      rj " S S\R                  5      rk " S S\R                  5      rl " S S\R                  5      rm " S S\R                  5      rn " S S\R                  5      ro " S S\R                  5      rp " S S\R                  5      rq " S S\R                  5      rr " S S\R                  5      rs " S S\R                  5      rt " S S\R                  5      ru " S S\R                  5      rv " S S\R                  5      rw " S S\R                  5      rx " S S\R                  5      ry " S S\R                  5      rz " S S\R                  5      r{ " S S\R                  5      r| " S S\R                  5      r} " S S\R                  5      r~ " S S\R                  5      r " S S\R                  5      r " S S\R                  5      r " S S\R                  5      r " S S\R                  5      r " S S\R                  5      r " S S\R                  5      r " S S\R                  5      r " S GS \R                  5      r " GS GS\R                  5      r " GS GS\R                  5      r " GS GS\R                  5      r " GS GS\R                  5      r " GS	 GS
\R                  5      r " GS GS\R                  5      r " GS GS\R                  5      r " GS GS\R                  5      r " GS GS\R                  5      r " GS GS\R                  5      r " GS GS\R                  5      r " GS GS\R                  5      r " GS GS\R                  5      r " GS GS\R                  5      r " GS GS\R                  5      r " GS GS \R                  5      r " GS! GS"\R                  5      r " GS# GS$\R                  5      r " GS% GS&\R                  5      r " GS' GS(\R                  5      r " GS) GS*\R                  5      r " GS+ GS,\R                  5      r " GS- GS.\R                  5      r " GS/ GS0\R                  5      r\GR@                  " \GS1GS25        \GRB                  " \GRD                  GS3GS45        \GRB                  " \GRD                  GS5GS65        \GR@                  " \uGS7GS85        \GR@                  " \GS7GS85        Gg9(:  zkGenerated message classes for ml version v1.

An API to enable creating and using machine learning models.
    )absolute_import)messages)encoding)extra_typesmlc                       \ rS rSrSr\R                  " S5       " S S\R                  5      5       r	\R                  " S5      r\R                  " S5      r\R                  " SSS	S
9rSrg)GoogleApiHttpBody   a  Message that represents an arbitrary HTTP body. It should only be used
for payload formats that can't be represented as JSON, such as raw binary or
an HTML page. This message can be used both in streaming and non-streaming
API methods in the request as well as the response. It can be used as a top-
level request field, which is convenient if one wants to extract parameters
from either the URL or HTTP template into the request fields and also want
access to the raw HTTP body. Example: message GetResourceRequest { // A
unique request id. string request_id = 1; // The raw HTTP body is bound to
this field. google.api.HttpBody http_body = 2; } service ResourceService {
rpc GetResource(GetResourceRequest) returns (google.api.HttpBody); rpc
UpdateResource(google.api.HttpBody) returns (google.protobuf.Empty); }
Example with streaming methods: service CaldavService { rpc
GetCalendar(stream google.api.HttpBody) returns (stream
google.api.HttpBody); rpc UpdateCalendar(stream google.api.HttpBody) returns
(stream google.api.HttpBody); } Use of this type only changes how the
request and response bodies are handled, all other features will continue to
work unchanged.

Messages:
  ExtensionsValueListEntry: A ExtensionsValueListEntry object.

Fields:
  contentType: The HTTP Content-Type header value specifying the content
    type of the body.
  data: The HTTP request/response body as raw binary.
  extensions: Application specific response metadata. Must be set in the
    first response for streaming APIs.
additionalPropertiesc                   f    \ rS rSrSr " S S\R                  5      r\R                  " SSSS9r	Sr
g	)
*GoogleApiHttpBody.ExtensionsValueListEntry/   zA ExtensionsValueListEntry object.

Messages:
  AdditionalProperty: An additional property for a
    ExtensionsValueListEntry object.

Fields:
  additionalProperties: Properties of the object. Contains field @type
    with type URL.
c                   b    \ rS rSrSr\R                  " S5      r\R                  " SS5      r	Sr
g)=GoogleApiHttpBody.ExtensionsValueListEntry.AdditionalProperty<   zAn additional property for a ExtensionsValueListEntry object.

Fields:
  key: Name of the additional property.
  value: A extra_types.JsonValue attribute.
   extra_types.JsonValue    N__name__
__module____qualname____firstlineno____doc__	_messagesStringFieldkeyMessageFieldvalue__static_attributes__r       Alib/googlecloudsdk/generated_clients/apis/ml/v1/ml_v1_messages.pyAdditionalPropertyr   <   ,    
 !!!$c$$%<a@er"   r$   r   Trepeatedr   Nr   r   r   r   r   r   Messager$   r   r   r!   r   r"   r#   ExtensionsValueListEntryr   /   4    		AY.. 	A %112FTXYr"   r*   r   r      Tr&   r   N)r   r   r   r   r   r   MapUnrecognizedFieldsr   r)   r*   r   contentType
BytesFielddatar   
extensionsr!   r   r"   r#   r	   r	      sn    : !!"89Z!2!2 Z :Z2 %%a(+			a	 $%%&@!dS*r"   r	   c                   b    \ rS rSrSr\R                  " S\R                  R                  S9r	Sr
g)"GoogleCloudMlV1AblationAttributionN   ad  Attributes credit to model inputs by ablating features (ie. setting them
to their default/missing values) and computing corresponding model score
delta per feature. The term "ablation" is in reference to running an
"ablation study" to analyze input effects on the outcome of interest, which
in this case is the model's output. This attribution method is supported for
TensorFlow and XGBoost models.

Fields:
  numFeatureInteractions: Number of feature interactions to account for in
    the ablation process, capped at the maximum number of provided input
    features. Currently, only the value 1 is supported.
r   variantr   N)r   r   r   r   r   r   IntegerFieldVariantINT32numFeatureInteractionsr!   r   r"   r#   r3   r3   N   s(     %11!Y=N=N=T=TUr"   r3   c                       \ rS rSrSr " S S\R                  5      r\R                  " S5      r	\R                  " SS5      rSrg)	 GoogleCloudMlV1AcceleratorConfig_   a  Represents a hardware accelerator request config. Note that the
AcceleratorConfig can be used in both Jobs and Versions. Learn more about
[accelerators for training](/ml-engine/docs/using-gpus) and [accelerators
for online prediction](/ml-engine/docs/machine-types-online-
prediction#gpus).

Enums:
  TypeValueValuesEnum: The type of accelerator to use.

Fields:
  count: The number of accelerators to attach to each machine running the
    job.
  type: The type of accelerator to use.
c                   H    \ rS rSrSrSrSrSrSrSr	Sr
S	rS
rSrSrSrSrSrg)4GoogleCloudMlV1AcceleratorConfig.TypeValueValuesEnumo   a  The type of accelerator to use.

Values:
  ACCELERATOR_TYPE_UNSPECIFIED: Unspecified accelerator type. Default to
    no GPU.
  NVIDIA_TESLA_K80: Nvidia Tesla K80 GPU.
  NVIDIA_TESLA_P100: Nvidia Tesla P100 GPU.
  NVIDIA_TESLA_V100: Nvidia V100 GPU.
  NVIDIA_TESLA_P4: Nvidia Tesla P4 GPU.
  NVIDIA_TESLA_T4: Nvidia T4 GPU.
  NVIDIA_TESLA_A100: Nvidia A100 GPU.
  TPU_V2: TPU v2.
  TPU_V3: TPU v3.
  TPU_V2_POD: TPU v2 POD.
  TPU_V3_POD: TPU v3 POD.
  TPU_V4_POD: TPU v4 POD.
r   r   r   r,                  	   
      r   Nr   r   r   r   r   ACCELERATOR_TYPE_UNSPECIFIEDNVIDIA_TESLA_K80NVIDIA_TESLA_P100NVIDIA_TESLA_V100NVIDIA_TESLA_P4NVIDIA_TESLA_T4NVIDIA_TESLA_A100TPU_V2TPU_V3
TPU_V2_POD
TPU_V3_POD
TPU_V4_PODr!   r   r"   r#   TypeValueValuesEnumr?   o   J    " $% OOFFJJJr"   rV   r   r   r   N)r   r   r   r   r   r   EnumrV   r7   count	EnumFieldtyper!   r   r"   r#   r<   r<   _   s<    INN > 
 
 
#%			2A	6$r"   r<   c                   >    \ rS rSrSr\R                  " SS5      rSrg))GoogleCloudMlV1AddTrialMeasurementRequest   zThe request message for the AddTrialMeasurement service method.

Fields:
  measurement: Required. The measurement to be added to a trial.
GoogleCloudMlV1Measurementr   r   N)	r   r   r   r   r   r   r   measurementr!   r   r"   r#   r]   r]      s     &&'CQG+r"   r]   c                       \ rS rSrSr\R                  " S\R                  R                  S9r	\R                  " SSSS9r\R                  " S	\R                  R                  S9rS
rg)GoogleCloudMlV1AutoScaling   a  Options for automatically scaling a model.

Fields:
  maxNodes: The maximum number of nodes to scale this model under load. The
    actual value will depend on resource quota and availability.
  metrics: MetricSpec contains the specifications to use to calculate the
    desired nodes count.
  minNodes: Optional. The minimum number of nodes to allocate for this
    model. These nodes are always up, starting from the time the model is
    deployed. Therefore, the cost of operating this model will be at least
    `rate` * `min_nodes` * number of hours since last billing cycle, where
    `rate` is the cost per node-hour as documented in the [pricing
    guide](/ml-engine/docs/pricing), even if no predictions are performed.
    There is additional cost for each prediction performed. Unlike manual
    scaling, if the load gets too heavy for the nodes that are up, the
    service will automatically add nodes to handle the increased load as
    well as scale back as traffic drops, always maintaining at least
    `min_nodes`. You will be charged for the time in which additional nodes
    are used. If `min_nodes` is not specified and AutoScaling is used with a
    [legacy (MLS1) machine type](/ml-engine/docs/machine-types-online-
    prediction), `min_nodes` defaults to 0, in which case, when traffic to a
    model stops (and after a cool-down period), nodes will be shut down and
    no charges will be incurred until traffic to the model resumes. If
    `min_nodes` is not specified and AutoScaling is used with a [Compute
    Engine (N1) machine type](/ml-engine/docs/machine-types-online-
    prediction), `min_nodes` defaults to 1. `min_nodes` must be at least 1
    for use with a Compute Engine machine type. You can set `min_nodes` when
    creating the model version, and you can also update `min_nodes` for an
    existing version: update_body.json: { 'autoScaling': { 'minNodes': 5 } }
    HTTP request: PATCH https://ml.googleapis.com/v1/{name=projects/*/models
    /*/versions/*}?update_mask=autoScaling.minNodes -d @./update_body.json
r   r5   GoogleCloudMlV1MetricSpecr   Tr&   r,   r   N)r   r   r   r   r   r   r7   r8   r9   maxNodesr   metricsminNodesr!   r   r"   r#   rb   rb      s[    B ##Ay/@/@/F/FG(""#>DQ'##Ay/@/@/F/FG(r"   rb   c                   d    \ rS rSrSr\R                  " SS5      r\R                  " SS5      rSr	g)	&GoogleCloudMlV1AutomatedStoppingConfig   a  Configuration for Automated Early Stopping of Trials. If no
implementation_config is set, automated early stopping will not be run.

Fields:
  decayCurveStoppingConfig: A
    GoogleCloudMlV1AutomatedStoppingConfigDecayCurveAutomatedStoppingConfig
    attribute.
  medianAutomatedStoppingConfig: A
    GoogleCloudMlV1AutomatedStoppingConfigMedianAutomatedStoppingConfig
    attribute.
GGoogleCloudMlV1AutomatedStoppingConfigDecayCurveAutomatedStoppingConfigr   CGoogleCloudMlV1AutomatedStoppingConfigMedianAutomatedStoppingConfigr   r   N)
r   r   r   r   r   r   r   decayCurveStoppingConfigmedianAutomatedStoppingConfigr!   r   r"   r#   ri   ri      sA    
 '334}  @A  B"+"8"89~  AB  #Cr"   ri   c                   <    \ rS rSrSr\R                  " S5      rSrg)rk      a  A
GoogleCloudMlV1AutomatedStoppingConfigDecayCurveAutomatedStoppingConfig
object.

Fields:
  useElapsedTime: If true, measurement.elapsed_time is used as the x-axis of
    each Trials Decay Curve. Otherwise, Measurement.steps will be used as
    the x-axis.
r   r   N	r   r   r   r   r   r   BooleanFielduseElapsedTimer!   r   r"   r#   rk   rk      s     ))!,.r"   rk   c                   <    \ rS rSrSr\R                  " S5      rSrg)rl      aX  The median automated stopping rule stops a pending trial if the trial's
best objective_value is strictly below the median 'performance' of all
completed trials reported up to the trial's last measurement. Currently,
'performance' refers to the running average of the objective values reported
by the trial in each measurement.

Fields:
  useElapsedTime: If true, the median automated stopping rule applies to
    measurement.use_elapsed_time, which means the elapsed_time field of the
    current trial's latest measurement is used to compute the median
    objective value for each completed trial.
r   r   Nrq   r   r"   r#   rl   rl      s     ))!,.r"   rl   c                   b    \ rS rSrSr\R                  " S\R                  R                  S9r	Sr
g)!GoogleCloudMlV1BlurBaselineConfig   a
  Config for blur baseline. When enabled, a linear path from the maximally
blurred image to the input image is created. Using a blurred baseline
instead of zero (black image) is motivated by the BlurIG approach explained
here: https://arxiv.org/abs/2004.03383

Fields:
  maxBlurSigma: The standard deviation of the blur kernel for the blurred
    baseline. The same blurring parameter is used for both the height and
    the width dimension. If not set, the method defaults to the zero (i.e.
    black for images) baseline.
r   r5   r   N)r   r   r   r   r   r   
FloatFieldr8   FLOATmaxBlurSigmar!   r   r"   r#   rw   rw      s'    
 %%a1B1B1H1HI,r"   rw   c                       \ rS rSrSr\R                  " S5      r\R                  " S5      r\R                  " S5      r	\R                  " S5      r
Srg)	%GoogleCloudMlV1BuiltInAlgorithmOutputi  a  Represents output related to a built-in algorithm Job.

Fields:
  framework: Framework on which the built-in algorithm was trained.
  modelPath: The Cloud Storage path to the `model/` directory where the
    training job saves the trained model. Only set for successful jobs that
    don't use hyperparameter tuning.
  pythonVersion: Python version on which the built-in algorithm was trained.
  runtimeVersion: AI Platform runtime version on which the built-in
    algorithm was trained.
r   r   r,   rA   r   N)r   r   r   r   r   r   r   	framework	modelPathpythonVersionruntimeVersionr!   r   r"   r#   r}   r}     sI    
 ##A&)##A&)''*-((+.r"   r}   c                       \ rS rSrSrSrg)GoogleCloudMlV1CancelJobRequesti  z)Request message for the CancelJob method.r   Nr   r   r   r   r   r!   r   r"   r#   r   r         2r"   r   c                       \ rS rSrSr " S S\R                  5      r " S S\R                  5      r\R                  " SSSS	9r
\R                  " SS
5      rSrg)GoogleCloudMlV1Capabilityi  zA GoogleCloudMlV1Capability object.

Enums:
  AvailableAcceleratorsValueListEntryValuesEnum:
  TypeValueValuesEnum:

Fields:
  availableAccelerators: Available accelerators for the capability.
  type: A TypeValueValuesEnum attribute.
c                   H    \ rS rSrSrSrSrSrSrSr	Sr
S	rS
rSrSrSrSrSrg)GGoogleCloudMlV1Capability.AvailableAcceleratorsValueListEntryValuesEnumi&  a  AvailableAcceleratorsValueListEntryValuesEnum enum type.

Values:
  ACCELERATOR_TYPE_UNSPECIFIED: Unspecified accelerator type. Default to
    no GPU.
  NVIDIA_TESLA_K80: Nvidia Tesla K80 GPU.
  NVIDIA_TESLA_P100: Nvidia Tesla P100 GPU.
  NVIDIA_TESLA_V100: Nvidia V100 GPU.
  NVIDIA_TESLA_P4: Nvidia Tesla P4 GPU.
  NVIDIA_TESLA_T4: Nvidia T4 GPU.
  NVIDIA_TESLA_A100: Nvidia A100 GPU.
  TPU_V2: TPU v2.
  TPU_V3: TPU v3.
  TPU_V2_POD: TPU v2 POD.
  TPU_V3_POD: TPU v3 POD.
  TPU_V4_POD: TPU v4 POD.
r   r   r   r,   rA   rB   rC   rD   rE   rF   rG   rH   r   NrI   r   r"   r#   -AvailableAcceleratorsValueListEntryValuesEnumr   &  rW   r"   r   c                   (    \ rS rSrSrSrSrSrSrSr	g)	-GoogleCloudMlV1Capability.TypeValueValuesEnumiE  zTypeValueValuesEnum enum type.

Values:
  TYPE_UNSPECIFIED: <no description>
  TRAINING: <no description>
  BATCH_PREDICTION: <no description>
  ONLINE_PREDICTION: <no description>
r   r   r   r,   r   N)
r   r   r   r   r   TYPE_UNSPECIFIEDTRAININGBATCH_PREDICTIONONLINE_PREDICTIONr!   r   r"   r#   rV   r   E  s      Hr"   rV   r   Tr&   r   r   N)r   r   r   r   r   r   rX   r   rV   rZ   availableAcceleratorsr[   r!   r   r"   r#   r   r     sT    	inn >INN  $--.]_`kop			2A	6$r"   r   c                       \ rS rSrSr\R                  " S5      r\R                  " S5      r\R                  " S5      r	Sr
g)4GoogleCloudMlV1CheckTrialEarlyStoppingStateMetatdataiW  a%  This message will be placed in the metadata field of a
google.longrunning.Operation associated with a CheckTrialEarlyStoppingState
request.

Fields:
  createTime: The time at which the operation was submitted.
  study: The name of the study that the trial belongs to.
  trial: The trial name.
r   r   r,   r   N)r   r   r   r   r   r   r   
createTimestudytrialr!   r   r"   r#   r   r   W  s9     $$Q'*



"%



"%r"   r   c                       \ rS rSrSrSrg)2GoogleCloudMlV1CheckTrialEarlyStoppingStateRequestig  zKThe request message for the CheckTrialEarlyStoppingState service method.
  r   Nr   r   r"   r#   r   r   g  s    r"   r   c                       \ rS rSrSr\R                  " S5      r\R                  " S5      r	\R                  " S5      r
Srg)3GoogleCloudMlV1CheckTrialEarlyStoppingStateResponseim  aB  The message will be placed in the response field of a completed
google.longrunning.Operation associated with a CheckTrialEarlyStoppingState
request.

Fields:
  endTime: The time at which operation processing completed.
  shouldStop: True if the Trial should stop.
  startTime: The time at which the operation was started.
r   r   r,   r   N)r   r   r   r   r   r   r   endTimerr   
shouldStop	startTimer!   r   r"   r#   r   r   m  s9     !!!$'%%a(*##A&)r"   r   c                       \ rS rSrSr\R                  " SS5      r\R                  " S5      r	\R                  " S5      rSrg)	#GoogleCloudMlV1CompleteTrialRequesti}  a+  The request message for the CompleteTrial service method.

Fields:
  finalMeasurement: Optional. If provided, it will be used as the completed
    trial's final_measurement; Otherwise, the service will auto-select a
    previously reported measurement as the final-measurement
  infeasibleReason: Optional. A human readable reason why the trial was
    infeasible. This should only be provided if `trial_infeasible` is true.
  trialInfeasible: Optional. True if the trial cannot be run with the given
    Parameter, and final_measurement will be ignored.
r_   r   r   r,   r   N)r   r   r   r   r   r   r   finalMeasurementr   infeasibleReasonrr   trialInfeasibler!   r   r"   r#   r   r   }  s>    
 ++,H!L**1-**1-/r"   r   c                   <    \ rS rSrSr\R                  " S5      rSrg)GoogleCloudMlV1Configi  ztA GoogleCloudMlV1Config object.

Fields:
  tpuServiceAccount: The service account Cloud ML uses to run on TPU node.
r   r   N)	r   r   r   r   r   r   r   tpuServiceAccountr!   r   r"   r#   r   r     s      ++A.r"   r   c                   b    \ rS rSrSr\R                  " S\R                  R                  S9r	Sr
g)GoogleCloudMlV1ContainerPorti  ah  Represents a network port in a single container. This message is a
subset of the [Kubernetes ContainerPort v1 core
specification](https://kubernetes.io/docs/reference/generated/kubernetes-
api/v1.18/#containerport-v1-core).

Fields:
  containerPort: Number of the port to expose on the container. This must be
    a valid port number: 0 < PORT_NUMBER < 65536.
r   r5   r   N)r   r   r   r   r   r   r7   r8   r9   containerPortr!   r   r"   r#   r   r     s'     ((I4E4E4K4KL-r"   r   c                       \ rS rSrSr\R                  " SSS9r\R                  " SSS9r\R                  " SSSS9r
\R                  " S	5      r\R                  " S
SSS9rSrg)GoogleCloudMlV1ContainerSpeci  a  Specification of a custom container for serving predictions. This
message is a subset of the [Kubernetes Container v1 core
specification](https://kubernetes.io/docs/reference/generated/kubernetes-
api/v1.18/#container-v1-core).

Fields:
  args: Immutable. Specifies arguments for the command that runs when the
    container starts. This overrides the container's
    [`CMD`](https://docs.docker.com/engine/reference/builder/#cmd). Specify
    this field as an array of executable and arguments, similar to a Docker
    `CMD`'s "default parameters" form. If you don't specify this field but
    do specify the command field, then the command from the `command` field
    runs without any additional arguments. See the [Kubernetes documentation
    about how the `command` and `args` fields interact with a container's
    `ENTRYPOINT` and `CMD`](https://kubernetes.io/docs/tasks/inject-data-
    application/define-command-argument-container/#notes). If you don't
    specify this field and don't specify the `commmand` field, then the
    container's
    [`ENTRYPOINT`](https://docs.docker.com/engine/reference/builder/#cmd)
    and `CMD` determine what runs based on their default behavior. See the
    [Docker documentation about how `CMD` and `ENTRYPOINT`
    interact](https://docs.docker.com/engine/reference/builder/#understand-
    how-cmd-and-entrypoint-interact). In this field, you can reference
    [environment variables set by AI Platform Prediction](/ai-
    platform/prediction/docs/custom-container-requirements#aip-variables)
    and environment variables set in the env field. You cannot reference
    environment variables set in the Docker image. In order for environment
    variables to be expanded, reference them by using the following syntax:
    $( VARIABLE_NAME) Note that this differs from Bash variable expansion,
    which does not use parentheses. If a variable cannot be resolved, the
    reference in the input string is used unchanged. To avoid variable
    expansion, you can escape this syntax with `$$`; for example:
    $$(VARIABLE_NAME) This field corresponds to the `args` field of the
    [Kubernetes Containers v1 core
    API](https://kubernetes.io/docs/reference/generated/kubernetes-
    api/v1.18/#container-v1-core).
  command: Immutable. Specifies the command that runs when the container
    starts. This overrides the container's [`ENTRYPOINT`](https://docs.docke
    r.com/engine/reference/builder/#entrypoint). Specify this field as an
    array of executable and arguments, similar to a Docker `ENTRYPOINT`'s
    "exec" form, not its "shell" form. If you do not specify this field,
    then the container's `ENTRYPOINT` runs, in conjunction with the args
    field or the container's
    [`CMD`](https://docs.docker.com/engine/reference/builder/#cmd), if
    either exists. If this field is not specified and the container does not
    have an `ENTRYPOINT`, then refer to the [Docker documentation about how
    `CMD` and `ENTRYPOINT`
    interact](https://docs.docker.com/engine/reference/builder/#understand-
    how-cmd-and-entrypoint-interact). If you specify this field, then you
    can also specify the `args` field to provide additional arguments for
    this command. However, if you specify this field, then the container's
    `CMD` is ignored. See the [Kubernetes documentation about how the
    `command` and `args` fields interact with a container's `ENTRYPOINT` and
    `CMD`](https://kubernetes.io/docs/tasks/inject-data-application/define-
    command-argument-container/#notes). In this field, you can reference
    [environment variables set by AI Platform Prediction](/ai-
    platform/prediction/docs/custom-container-requirements#aip-variables)
    and environment variables set in the env field. You cannot reference
    environment variables set in the Docker image. In order for environment
    variables to be expanded, reference them by using the following syntax:
    $( VARIABLE_NAME) Note that this differs from Bash variable expansion,
    which does not use parentheses. If a variable cannot be resolved, the
    reference in the input string is used unchanged. To avoid variable
    expansion, you can escape this syntax with `$$`; for example:
    $$(VARIABLE_NAME) This field corresponds to the `command` field of the
    [Kubernetes Containers v1 core
    API](https://kubernetes.io/docs/reference/generated/kubernetes-
    api/v1.18/#container-v1-core).
  env: Immutable. List of environment variables to set in the container.
    After the container starts running, code running in the container can
    read these environment variables. Additionally, the command and args
    fields can reference these variables. Later entries in this list can
    also reference earlier entries. For example, the following example sets
    the variable `VAR_2` to have the value `foo bar`: ```json [ { "name":
    "VAR_1", "value": "foo" }, { "name": "VAR_2", "value": "$(VAR_1) bar" }
    ] ``` If you switch the order of the variables in the example, then the
    expansion does not occur. This field corresponds to the `env` field of
    the [Kubernetes Containers v1 core
    API](https://kubernetes.io/docs/reference/generated/kubernetes-
    api/v1.18/#container-v1-core).
  image: URI of the Docker image to be used as the custom container for
    serving predictions. This URI must identify [an image in Artifact
    Registry](/artifact-registry/docs/overview) and begin with the hostname
    `{REGION}-docker.pkg.dev`, where `{REGION}` is replaced by the region
    that matches AI Platform Prediction [regional endpoint](/ai-
    platform/prediction/docs/regional-endpoints) that you are using. For
    example, if you are using the `us-central1-ml.googleapis.com` endpoint,
    then this URI must begin with `us-central1-docker.pkg.dev`. To use a
    custom container, the [AI Platform Google-managed service account](/ai-
    platform/prediction/docs/custom-service-account#default) must have
    permission to pull (read) the Docker image at this URI. The AI Platform
    Google-managed service account has the following format:
    `service-{PROJECT_NUMBER}@cloud-ml.google.com.iam.gserviceaccount.com`
    {PROJECT_NUMBER} is replaced by your Google Cloud project number. By
    default, this service account has necessary permissions to pull an
    Artifact Registry image in the same Google Cloud project where you are
    using AI Platform Prediction. In this case, no configuration is
    necessary. If you want to use an image from a different Google Cloud
    project, learn how to [grant the Artifact Registry Reader
    (roles/artifactregistry.reader) role for a repository](/artifact-
    registry/docs/access-control#grant-repo) to your projet's AI Platform
    Google-managed service account. To learn about the requirements for the
    Docker image itself, read [Custom container requirements](/ai-
    platform/prediction/docs/custom-container-requirements).
  ports: Immutable. List of ports to expose from the container. AI Platform
    Prediction sends any prediction requests that it receives to the first
    port on this list. AI Platform Prediction also sends [liveness and
    health checks](/ai-platform/prediction/docs/custom-container-
    requirements#health) to this port. If you do not specify this field, it
    defaults to following value: ```json [ { "containerPort": 8080 } ] ```
    AI Platform Prediction does not use ports other than the first one
    listed. This field corresponds to the `ports` field of the [Kubernetes
    Containers v1 core
    API](https://kubernetes.io/docs/reference/generated/kubernetes-
    api/v1.18/#container-v1-core).
r   Tr&   r   GoogleCloudMlV1EnvVarr,   rA   r   rB   r   N)r   r   r   r   r   r   r   argscommandr   envimageportsr!   r   r"   r#   r   r     si    sj 
		q4	0$!!!d3'6DI#



"%

 
 !?T
R%r"   r   c                       \ rS rSrSr\R                  " S\R                  R                  S9r	\R                  " S5      rSrg)GoogleCloudMlV1DiskConfigi$  a&  Represents the config of disk options.

Fields:
  bootDiskSizeGb: Size in GB of the boot disk (default is 100GB).
  bootDiskType: Type of the boot disk (default is "pd-ssd"). Valid values:
    "pd-ssd" (Persistent Disk Solid State Drive) or "pd-standard"
    (Persistent Disk Hard Disk Drive).
r   r5   r   r   N)r   r   r   r   r   r   r7   r8   r9   bootDiskSizeGbr   bootDiskTyper!   r   r"   r#   r   r   $  s7     ))!Y5F5F5L5LM.&&q),r"   r   c                   <    \ rS rSrSr\R                  " S5      rSrg)GoogleCloudMlV1EncryptionConfigi2  al  Represents a custom encryption key configuration that can be applied to
a resource.

Fields:
  kmsKeyName: The Cloud KMS resource identifier of the customer-managed
    encryption key used to protect a resource, such as a training job. It
    has the following format: `projects/{PROJECT_ID}/locations/{REGION}/keyR
    ings/{KEY_RING_NAME}/cryptoKeys/{KEY_NAME}`
r   r   N)	r   r   r   r   r   r   r   
kmsKeyNamer!   r   r"   r#   r   r   2  s     $$Q'*r"   r   c                   `    \ rS rSrSr\R                  " S5      r\R                  " S5      rSr	g)r   i@  a'  Represents an environment variable to be made available in a container.
This message is a subset of the [Kubernetes EnvVar v1 core
specification](https://kubernetes.io/docs/reference/generated/kubernetes-
api/v1.18/#envvar-v1-core).

Fields:
  name: Name of the environment variable. Must be a [valid C identifier](htt
    ps://github.com/kubernetes/kubernetes/blob/v1.18.8/staging/src/k8s.io/ap
    imachinery/pkg/util/validation/validation.go#L258) and must not begin
    with the prefix `AIP_`.
  value: Value of the environment variable. Defaults to an empty string. In
    this field, you can reference [environment variables set by AI Platform
    Prediction](/ai-platform/prediction/docs/custom-container-
    requirements#aip-variables) and environment variables set earlier in the
    same env field as where this message occurs. You cannot reference
    environment variables set in the Docker image. In order for environment
    variables to be expanded, reference them by using the following syntax:
    $(VARIABLE_NAME) Note that this differs from Bash variable expansion,
    which does not use parentheses. If a variable cannot be resolved, the
    reference in the input string is used unchanged. To avoid variable
    expansion, you can escape this syntax with `$$`; for example:
    $$(VARIABLE_NAME)
r   r   r   N)
r   r   r   r   r   r   r   namer    r!   r   r"   r#   r   r   @  s)    0 
		q	!$



"%r"   r   c                   >    \ rS rSrSr\R                  " SS5      rSrg)GoogleCloudMlV1ExplainRequesti]  z|Request for explanations to be issued against a trained model.

Fields:
  httpBody: Required. The explanation request body.
r	   r   r   N	r   r   r   r   r   r   r   httpBodyr!   r   r"   r#   r   r   ]  s     ##$7;(r"   r   c                       \ rS rSrSr\R                  " SS5      r\R                  " SS5      r\R                  " SS5      r	\R                  " S	S
5      r
\R                  " SS5      r\R                  " SS5      rSrg) GoogleCloudMlV1ExplanationConfigig  a  Message holding configuration options for explaining model predictions.
There are three feature attribution methods supported for TensorFlow models:
integrated gradients, sampled Shapley, and XRAI. [Learn more about feature
attributions.](/ai-platform/prediction/docs/ai-explanations/overview)

Fields:
  ablationAttribution: TensorFlow framework explanation methods. Deprecated.
    Attributes credit to model inputs by ablating features (ie. setting them
    to their default/missing values) and computing corresponding model score
    delta per feature. The term "ablation" is in reference to running an
    "ablation study" to analyze input effects on the outcome of interest,
    which in this case is the model's output. This attribution method is
    supported for TensorFlow and XGBoost models.
  integratedGradientsAttribution: Attributes credit by computing the Aumann-
    Shapley value taking advantage of the model's fully differentiable
    structure. Refer to this paper for more details:
    https://arxiv.org/abs/1703.01365
  saabasAttribution: Attributes credit by running a faster approximation to
    the TreeShap method. Please refer to this link for more details:
    https://blog.datadive.net/interpreting-random-forests/ This attribution
    method is only supported for XGBoost models.
  sampledShapleyAttribution: An attribution method that approximates Shapley
    values for features that contribute to the label being predicted. A
    sampling strategy is used to approximate the value rather than
    considering all subsets of features.
  treeShapAttribution: XGBoost framework explanation methods. Attributes
    credit by computing the Shapley value taking advantage of the model's
    tree ensemble structure. Refer to this paper for more details:
    http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-
    model-predictions.pdf. This attribution method is supported for XGBoost
    models.
  xraiAttribution: Attributes credit by computing the XRAI taking advantage
    of the model's fully differentiable structure. Refer to this paper for
    more details: https://arxiv.org/abs/1906.02825 Currently only
    implemented for models with natural image inputs.
r3   r   -GoogleCloudMlV1IntegratedGradientsAttributionr    GoogleCloudMlV1SaabasAttributionr,   (GoogleCloudMlV1SampledShapleyAttributionrA   "GoogleCloudMlV1TreeShapAttributionrB   GoogleCloudMlV1XraiAttributionrC   r   N)r   r   r   r   r   r   r   ablationAttributionintegratedGradientsAttributionsaabasAttributionsampledShapleyAttributiontreeShapAttributionxraiAttributionr!   r   r"   r#   r   r   g  s    #J "../SUVW#,#9#9:ikl#m ,,-OQRS'445_abc!../SUVW**+KQO/r"   r   c                   $   \ rS rSrSr " S S\R                  5      r " S S\R                  5      r " S S\R                  5      r	\R                  " S	S
5      r\R                  " S5      r\R                  " SS5      r\R                  " SS5      r\R                  " SS5      r\R                  " S5      r\R&                  " SSS9r\R                  " S5      r\R&                  " S5      r\R&                  " S5      r\R                  " SS5      r\R&                  " S5      r\R&                  " S5      r\R&                  " S5      r\R&                  " SSS9r\R&                  " S5      r\R&                  " S5      r\R&                  " S5      rSr g )!GoogleCloudMlV1ExplanationInputi  a4  Represents input parameters for a model explanation job.

Enums:
  DataFormatValueValuesEnum: Required. The format of the input data.
  FrameworkValueValuesEnum: Optional. The framework used to train this
    model. Only needed if model_version is a GCS path. Otherwise the
    framework specified during version creation will be used.
  OutputDataFormatValueValuesEnum: Optional. The format of the output data,
    defaults to BIGQUERY.

Fields:
  accelerator: Optional. The type and number of accelerators to be attached
    to each machine running the job.
  batchSize: Optional. Number of records per batch, defaults to 64. The
    service will buffer batch_size number of records in memory before
    invoking one Tensorflow prediction call internally. So take the record
    size and memory available into consideration when setting this
    parameter.
  dataFormat: Required. The format of the input data.
  explanationConfig: Required only if model_version is specified through a
    uri, otherwise the same explanation config specified at model version
    creation will be used. Configures explainability features on the model's
    version. Some explanation features require additional metadata to be
    loaded as part of the model payload.
  framework: Optional. The framework used to train this model. Only needed
    if model_version is a GCS path. Otherwise the framework specified during
    version creation will be used.
  initialWorkerCount: Optional. The initial number of workers to be used for
    parallel processing. Defaults to 0 if one wants the service to figure
    out the number. The actual number of workers being used may change after
    the job starts depending on the autoscaling policy.
  inputPaths: Required when data_format is JSON. The Cloud Storage location
    of the input data. May contain wildcards.
  maxWorkerCount: Optional. The maximum number of workers to be used for
    parallel processing. Defaults to 10 if not specified.
  modelName: Use this field if you want to use the default version for the
    specified model. The string must use the following format:
    `"projects/YOUR_PROJECT/models/YOUR_MODEL"`
  outputBigqueryTable: Required when output_data_format is BIGQUERY. The
    output fully qualified BigQuery table name in the format of
    "[project_id].[dataset_name].[table_name]".
  outputDataFormat: Optional. The format of the output data, defaults to
    BIGQUERY.
  region: Required. The Compute Engine region to run the explanation job in.
    See the available regions for AI Platform services.
  runtimeVersion: Required. The AI Platform runtime version to use for the
    explanation job. See <a href="https://cloud.google.com/ml-
    engine/docs/tensorflow/runtime-version-list</a> for available runtime
    versions. Must be >=1.12.
  signatureName: Optional. The name of the signature defined in the
    SavedModel to use for this job. Please refer to
    [SavedModel](https://tensorflow.github.io/serving/serving_basic.html)
    for information about how to use signatures. Defaults to [DEFAULT_SERVIN
    G_SIGNATURE_DEF_KEY](https://www.tensorflow.org/api_docs/python/tf/saved
    _model/signature_constants) , which is "serving_default".
  tagsOverride: Optional. The set of tags to select which meta graph defined
    in the SavedModel to use for this job. Please refer to
    [SavedModel](https://www.tensorflow.org/serving/serving_basic) for
    information about how to use tags. Overrides the default tags when
    predicting from a deployed model version. When predicting from a model
    directory, the tag defaults to [SERVING](https://www.tensorflow.org/api_
    docs/python/tf/saved_model/tag_constants) , which is "serve".
  uri: Use this field if you want to specify a Google Cloud Storage path for
    the model to use, e.g. gs://{BUCKET}/{MODEL_DIR}/{MODEL_NAME}.
  versionName: Use this field if you want to specify a version of the model
    to use. The string is formatted the same way as `model_version`, with
    the addition of the version information:
    `"projects/YOUR_PROJECT/models/YOUR_MODEL/versions/YOUR_VERSION"`
  workerType: Optional. The type of virtual machine to use for the
    explanation job's worker nodes. It supports all machine types available
    on GCP ( https://cloud.google.com/compute/docs/machine-types), subject
    to the availability in the specific region the job runs.
c                   $    \ rS rSrSrSrSrSrSrg)9GoogleCloudMlV1ExplanationInput.DataFormatValueValuesEnumi  aT  Required. The format of the input data.

Values:
  DATA_FORMAT_UNSPECIFIED: Unspecified format.
  JSON: Each line of the file is a JSON dictionary representing one
    record. Currently available only for input data.
  BIGQUERY: Values are rows in a BigQuery table given its associated
    schema. Currently available only for output data.
r   r   r   r   N	r   r   r   r   r   DATA_FORMAT_UNSPECIFIEDJSONBIGQUERYr!   r   r"   r#   DataFormatValueValuesEnumr           DHr"   r   c                   (    \ rS rSrSrSrSrSrSrSr	g)	8GoogleCloudMlV1ExplanationInput.FrameworkValueValuesEnumi  w  Optional. The framework used to train this model. Only needed if
model_version is a GCS path. Otherwise the framework specified during
version creation will be used.

Values:
  FRAMEWORK_UNSPECIFIED: Unspecified framework. Assigns a value based on
    the file suffix.
  TENSORFLOW: Tensorflow framework.
  SCIKIT_LEARN: Scikit-learn framework.
  XGBOOST: XGBoost framework.
r   r   r   r,   r   N
r   r   r   r   r   FRAMEWORK_UNSPECIFIED
TENSORFLOWSCIKIT_LEARNXGBOOSTr!   r   r"   r#   FrameworkValueValuesEnumr         
 JLGr"   r   c                   $    \ rS rSrSrSrSrSrSrg)?GoogleCloudMlV1ExplanationInput.OutputDataFormatValueValuesEnumi  ak  Optional. The format of the output data, defaults to BIGQUERY.

Values:
  DATA_FORMAT_UNSPECIFIED: Unspecified format.
  JSON: Each line of the file is a JSON dictionary representing one
    record. Currently available only for input data.
  BIGQUERY: Values are rows in a BigQuery table given its associated
    schema. Currently available only for output data.
r   r   r   r   Nr   r   r"   r#   OutputDataFormatValueValuesEnumr     r   r"   r   r<   r   r   r,   r   rA   rB   rC   rD   Tr&   rE   rF   rG   rH                  r
      r   N)!r   r   r   r   r   r   rX   r   r   r   r   acceleratorr7   	batchSizerZ   
dataFormatexplanationConfigr~   initialWorkerCountr   
inputPathsmaxWorkerCount	modelNameoutputBigqueryTableoutputDataFormatregionr   signatureNametagsOverrideuriversionName
workerTyper!   r   r"   r#   r   r     ss   HT)..  "	  &&'I1M+$$Q')""#>B*,,-OQRS!!"<a@) --a0$$Q6*))!,.##A&)!--b1(()JBO  $&((,.''+-&&rD9,b!#%%b)+$$R(*r"   r   c                       \ rS rSrSr\R                  " S5      r\R                  " S5      r\R                  " S5      r
\R                  " S5      rSrg)	 GoogleCloudMlV1ExplanationOutputi!  aJ  Represents results of an explanation job.

Fields:
  errorCount: The number of data instances which resulted in errors.
  explanationCount: The number of generated explanations.
  nodeHours: Node hours used by the batch explanation job.
  outputBigqueryTable: The output BigQuery table name provided at the job
    creation time.
r   r   r,   rA   r   N)r   r   r   r   r   r   r7   
errorCountexplanationCountry   	nodeHoursr   r   r!   r   r"   r#   r   r   !  sK     %%a(*++A.""1%)!--a0r"   r   c                   <    \ rS rSrSr\R                  " SSSS9rSrg)	 GoogleCloudMlV1FeatureNoiseSigmai2  a  Noise sigma by features. Noise sigma represents the standard deviation
of the gaussian kernel that will be used to add noise to interpolated inputs
prior to computing gradients.

Fields:
  noiseSigma: Noise sigma per feature. No noise is added to features that
    are not set.
4GoogleCloudMlV1FeatureNoiseSigmaNoiseSigmaForFeaturer   Tr&   r   N)	r   r   r   r   r   r   r   
noiseSigmar!   r   r"   r#   r   r   2  s      %%&\^_jno*r"   r   c                       \ rS rSrSr\R                  " S5      r\R                  " S\R                  R                  S9rSrg)r   i?  zNoise sigma for a single feature.

Fields:
  name: The name of the input feature for which noise sigma is provided.
  sigma: Standard deviation of gaussian kernel for noise.
r   r   r5   r   N)r   r   r   r   r   r   r   r   ry   r8   rz   sigmar!   r   r"   r#   r   r   ?  s7     
		q	!$


q)*;*;*A*A
B%r"   r   c                       \ rS rSrSr\R                  " SS5      r\R                  " S5      r	\R                  " S5      rSrg)	 GoogleCloudMlV1GetConfigResponseiK  a  Returns service account information associated with a project.

Fields:
  config: A GoogleCloudMlV1Config attribute.
  serviceAccount: The service account Cloud ML uses to access resources in
    the project.
  serviceAccountProject: The project number for `service_account`.
r   r   r   r,   r   N)r   r   r   r   r   r   r   configr   serviceAccountr7   serviceAccountProjectr!   r   r"   r#   r  r  K  s=     !!"91=&((+.#003r"   r  c                   \   \ rS rSrSr " S S\R                  5      r\R                  " S5       " S S\R                  5      5       r\R                  " S5       " S S	\R                  5      5       r\R                  " S
SSS9r\R                  " SS5      r\R                   " S5      r\R                  " S
S5      r\R                  " SS5      r\R(                  " S5      r\R                   " S5      r\R.                  " SS5      r\R                   " S5      r\R                  " S	S5      rSrg)#GoogleCloudMlV1HyperparameterOutputiZ  a  Represents the result of a single hyperparameter tuning trial from a
training job. The TrainingOutput object that is returned on successful
completion of a training job with hyperparameter tuning includes a list of
HyperparameterOutput objects, one for each successful trial.

Enums:
  StateValueValuesEnum: Output only. The detailed state of the trial.

Messages:
  HyperparametersValue: The hyperparameters given to this trial.
  WebAccessUrisValue: URIs for accessing [interactive
    shells](https://cloud.google.com/ai-platform/training/docs/monitor-
    debug-interactive-shell) (one URI for each training node). Only
    available if this trial is part of a hyperparameter tuning job and the
    job's training_input.enable_web_access is `true`. The keys are names of
    each node in the training job; for example, `master-replica-0` for the
    master node, `worker-replica-0` for the first worker, and `ps-replica-0`
    for the first parameter server. The values are the URIs for each node's
    interactive shell.

Fields:
  allMetrics: All recorded object metrics for this trial. This field is not
    currently populated.
  builtInAlgorithmOutput: Details related to built-in algorithms jobs. Only
    set for trials of built-in algorithms jobs that have succeeded.
  endTime: Output only. End time for the trial.
  finalMetric: The final objective metric seen for this trial.
  hyperparameters: The hyperparameters given to this trial.
  isTrialStoppedEarly: True if the trial is stopped early.
  startTime: Output only. Start time for the trial.
  state: Output only. The detailed state of the trial.
  trialId: The trial id for these results.
  webAccessUris: URIs for accessing [interactive
    shells](https://cloud.google.com/ai-platform/training/docs/monitor-
    debug-interactive-shell) (one URI for each training node). Only
    available if this trial is part of a hyperparameter tuning job and the
    job's training_input.enable_web_access is `true`. The keys are names of
    each node in the training job; for example, `master-replica-0` for the
    master node, `worker-replica-0` for the first worker, and `ps-replica-0`
    for the first parameter server. The values are the URIs for each node's
    interactive shell.
c                   8    \ rS rSrSrSrSrSrSrSr	Sr
S	rS
rSrg)8GoogleCloudMlV1HyperparameterOutput.StateValueValuesEnumi  p  Output only. The detailed state of the trial.

Values:
  STATE_UNSPECIFIED: The job state is unspecified.
  QUEUED: The job has been just created and processing has not yet begun.
  PREPARING: The service is preparing to run the job.
  RUNNING: The job is in progress.
  SUCCEEDED: The job completed successfully.
  FAILED: The job failed. `error_message` should contain the details of
    the failure.
  CANCELLING: The job is being cancelled. `error_message` should describe
    the reason for the cancellation.
  CANCELLED: The job has been cancelled. `error_message` should describe
    the reason for the cancellation.
r   r   r   r,   rA   rB   rC   rD   r   Nr   r   r   r   r   STATE_UNSPECIFIEDQUEUED	PREPARINGRUNNING	SUCCEEDEDFAILED
CANCELLING	CANCELLEDr!   r   r"   r#   StateValueValuesEnumr    2     FIGIFJIr"   r  r   c                   f    \ rS rSrSr " S S\R                  5      r\R                  " SSSS9r	Sr
g	)
8GoogleCloudMlV1HyperparameterOutput.HyperparametersValuei  zThe hyperparameters given to this trial.

Messages:
  AdditionalProperty: An additional property for a HyperparametersValue
    object.

Fields:
  additionalProperties: Additional properties of type HyperparametersValue
c                   `    \ rS rSrSr\R                  " S5      r\R                  " S5      rSr	g)KGoogleCloudMlV1HyperparameterOutput.HyperparametersValue.AdditionalPropertyi  zAn additional property for a HyperparametersValue object.

Fields:
  key: Name of the additional property.
  value: A string attribute.
r   r   r   N
r   r   r   r   r   r   r   r   r    r!   r   r"   r#   r$   r    )    
 !!!$c##A&er"   r$   r   Tr&   r   Nr(   r   r"   r#   HyperparametersValuer    2    	'Y.. 	' %112FTXYr"   r  c                   f    \ rS rSrSr " S S\R                  5      r\R                  " SSSS9r	Sr
g	)
6GoogleCloudMlV1HyperparameterOutput.WebAccessUrisValuei  a  URIs for accessing [interactive shells](https://cloud.google.com/ai-
platform/training/docs/monitor-debug-interactive-shell) (one URI for each
training node). Only available if this trial is part of a hyperparameter
tuning job and the job's training_input.enable_web_access is `true`. The
keys are names of each node in the training job; for example, `master-
replica-0` for the master node, `worker-replica-0` for the first worker,
and `ps-replica-0` for the first parameter server. The values are the URIs
for each node's interactive shell.

Messages:
  AdditionalProperty: An additional property for a WebAccessUrisValue
    object.

Fields:
  additionalProperties: Additional properties of type WebAccessUrisValue
c                   `    \ rS rSrSr\R                  " S5      r\R                  " S5      rSr	g)IGoogleCloudMlV1HyperparameterOutput.WebAccessUrisValue.AdditionalPropertyi  An additional property for a WebAccessUrisValue object.

Fields:
  key: Name of the additional property.
  value: A string attribute.
r   r   r   Nr  r   r"   r#   r$   r#    r  r"   r$   r   Tr&   r   Nr(   r   r"   r#   WebAccessUrisValuer!    2    "	'Y.. 	' %112FTXYr"   r%  7GoogleCloudMlV1HyperparameterOutputHyperparameterMetricr   Tr&   r}   r   r,   rA   rB   rC   rD   rE   rF   rG   r   N)r   r   r   r   r   r   rX   r  r   r-   r)   r  r%  r   
allMetricsbuiltInAlgorithmOutputr   r   finalMetrichyperparametersrr   isTrialStoppedEarlyr   rZ   statetrialIdwebAccessUrisr!   r   r"   r#   r	  r	  Z  s4   )VY^^ 2 !!"89ZY.. Z :Z0 !!"89Z9,, Z :Z> %%&_abmqr*$112Y[\]!!!$'&&'`bcd+**+A1E/!..q1##A&)


4a
8%!!!$'(()=rB-r"   r	  c                   `    \ rS rSrSr\R                  " S5      r\R                  " S5      r	Sr
g)r'  i  zAn observed value of a metric.

Fields:
  objectiveValue: The objective value at this training step.
  trainingStep: The global training step for this metric.
r   r   r   N)r   r   r   r   r   r   ry   objectiveValuer7   trainingStepr!   r   r"   r#   r'  r'    s)     ''*.''*,r"   r'  c                   &   \ rS rSrSr " S S\R                  5      r " S S\R                  5      r\R                  " SS5      r
\R                  " S5      r\R                  " SS	5      r\R                  " S
5      r\R                   " S\R"                  R$                  S9r\R                   " S\R"                  R$                  S9r\R                   " S\R"                  R$                  S9r\R,                  " SSSS9r\R                  " S5      rSrg)!GoogleCloudMlV1HyperparameterSpeci  a	  Represents a set of hyperparameters to optimize.

Enums:
  AlgorithmValueValuesEnum: Optional. The search algorithm specified for the
    hyperparameter tuning job. Uses the default AI Platform hyperparameter
    tuning algorithm if unspecified.
  GoalValueValuesEnum: Required. The type of goal to use for tuning.
    Available types are `MAXIMIZE` and `MINIMIZE`. Defaults to `MAXIMIZE`.

Fields:
  algorithm: Optional. The search algorithm specified for the hyperparameter
    tuning job. Uses the default AI Platform hyperparameter tuning algorithm
    if unspecified.
  enableTrialEarlyStopping: Optional. Indicates if the hyperparameter tuning
    job enables auto trial early stopping.
  goal: Required. The type of goal to use for tuning. Available types are
    `MAXIMIZE` and `MINIMIZE`. Defaults to `MAXIMIZE`.
  hyperparameterMetricTag: Optional. The TensorFlow summary tag name to use
    for optimizing trials. For current versions of TensorFlow, this tag name
    should exactly match what is shown in TensorBoard, including all scopes.
    For versions of TensorFlow prior to 0.12, this should be only the tag
    passed to tf.Summary. By default, "training/hptuning/metric" will be
    used.
  maxFailedTrials: Optional. The number of failed trials that need to be
    seen before failing the hyperparameter tuning job. You can specify this
    field to override the default failing criteria for AI Platform
    hyperparameter tuning jobs. Defaults to zero, which means the service
    decides when a hyperparameter job should fail.
  maxParallelTrials: Optional. The number of training trials to run
    concurrently. You can reduce the time it takes to perform hyperparameter
    tuning by adding trials in parallel. However, each trail only benefits
    from the information gained in completed trials. That means that a trial
    does not get access to the results of trials running at the same time,
    which could reduce the quality of the overall optimization. Each trial
    will use the same scale tier and machine types. Defaults to one.
  maxTrials: Optional. How many training trials should be attempted to
    optimize the specified hyperparameters. Defaults to one.
  params: Required. The set of parameters to tune.
  resumePreviousJobId: Optional. The prior hyperparameter tuning job id that
    users hope to continue with. The job id will be used to find the
    corresponding vizier study guid and resume the study.
c                   (    \ rS rSrSrSrSrSrSrSr	g)	:GoogleCloudMlV1HyperparameterSpec.AlgorithmValueValuesEnumi  aG  Optional. The search algorithm specified for the hyperparameter tuning
job. Uses the default AI Platform hyperparameter tuning algorithm if
unspecified.

Values:
  ALGORITHM_UNSPECIFIED: The default algorithm used by the hyperparameter
    tuning service. This is a Bayesian optimization algorithm.
  GRID_SEARCH: Simple grid search within the feasible space. To use grid
    search, all parameters must be `INTEGER`, `CATEGORICAL`, or
    `DISCRETE`.
  RANDOM_SEARCH: Simple random search within the feasible space.
  POPULATION_BASED_TRAINING: Population Based Training Algorithm.
r   r   r   r,   r   N)
r   r   r   r   r   ALGORITHM_UNSPECIFIEDGRID_SEARCHRANDOM_SEARCHPOPULATION_BASED_TRAININGr!   r   r"   r#   AlgorithmValueValuesEnumr6    s     KM !r"   r;  c                   $    \ rS rSrSrSrSrSrSrg)5GoogleCloudMlV1HyperparameterSpec.GoalValueValuesEnumi/  a  Required. The type of goal to use for tuning. Available types are
`MAXIMIZE` and `MINIMIZE`. Defaults to `MAXIMIZE`.

Values:
  GOAL_TYPE_UNSPECIFIED: Goal Type will default to maximize.
  MAXIMIZE: Maximize the goal metric.
  MINIMIZE: Minimize the goal metric.
r   r   r   r   N	r   r   r   r   r   GOAL_TYPE_UNSPECIFIEDMAXIMIZEMINIMIZEr!   r   r"   r#   GoalValueValuesEnumr=  /  s     HHr"   rB  r   r   r,   rA   rB   r5   rC   rD   GoogleCloudMlV1ParameterSpecrE   Tr&   rF   r   N)r   r   r   r   r   r   rX   r;  rB  rZ   	algorithmrr   enableTrialEarlyStoppinggoalr   hyperparameterMetricTagr7   r8   r9   maxFailedTrialsmaxParallelTrials	maxTrialsr   paramsresumePreviousJobIdr!   r   r"   r#   r4  r4    s    )V" "&INN  !!"<a@)&33A6			2A	6$%11!4**1i6G6G6M6MN/,,Q	8I8I8O8OP$$Q	0A0A0G0GH)!!"@!dS&!--a0r"   r4  c                       \ rS rSrSr\R                  " SS5      r\R                  " S\R                  R                  S9r\R                  " SS5      rS	rg
)r   iG  a  Attributes credit by computing the Aumann-Shapley value taking advantage
of the model's fully differentiable structure. Refer to this paper for more
details: https://arxiv.org/abs/1703.01365

Fields:
  blurBaselineConfig: Config for IG with blur baseline. When enabled, a
    linear path from the maximally blurred image to the input image is
    created. Using a blurred baseline instead of zero (black image) is
    motivated by the BlurIG approach explained here:
    https://arxiv.org/abs/2004.03383
  numIntegralSteps: Number of steps for approximating the path integral. A
    good value to start is 50 and gradually increase until the sum to diff
    property is met within the desired error range.
  smoothGradConfig: Config for SmoothGrad approximation of gradients. When
    enabled, the gradients are approximated by averaging the gradients from
    noisy samples in the vicinity of the inputs. Adding noise can help
    improve the computed gradients, see here for why:
    https://arxiv.org/pdf/1706.03825.pdf
rw   r   r   r5   GoogleCloudMlV1SmoothGradConfigr,   r   Nr   r   r   r   r   r   r   blurBaselineConfigr7   r8   r9   numIntegralStepssmoothGradConfigr!   r   r"   r#   r   r   G  sQ    ( !--.QSTU++Ay7H7H7N7NO++,MqQr"   r   c                      \ rS rSrSr " S S\R                  5      r\R                  " S5       " S S\R                  5      5       r\R                  " S5      r\R                  " S	5      r\R                  " S
5      r\R                   " S5      r\R$                  " SS5      r\R$                  " SS5      r\R                  " S5      r\R,                  " S5      r\R$                  " SS5      r\R$                  " SS5      r\R$                  " SS5      r\R                  " S5      r\R8                  " SS5      r\R$                  " SS5      r\R$                  " SS5      rSr g)GoogleCloudMlV1Jobia  a   Represents a training or prediction job.

Enums:
  StateValueValuesEnum: Output only. The detailed state of a job.

Messages:
  LabelsValue: Optional. One or more labels that you can add, to organize
    your jobs. Each label is a key-value pair, where both the key and the
    value are arbitrary strings that you supply. For more information, see
    the documentation on using labels.

Fields:
  createTime: Output only. When the job was created.
  endTime: Output only. When the job processing was completed.
  errorMessage: Output only. The details of a failure or a cancellation.
  etag: `etag` is used for optimistic concurrency control as a way to help
    prevent simultaneous updates of a job from overwriting each other. It is
    strongly suggested that systems make use of the `etag` in the read-
    modify-write cycle to perform job updates in order to avoid race
    conditions: An `etag` is returned in the response to `GetJob`, and
    systems are expected to put that etag in the request to `UpdateJob` to
    ensure that their change will be applied to the same version of the job.
  explanationInput: Input parameters to create an explanation job.
  explanationOutput: The current explanation job result.
  jobId: Required. The user-specified id of the job.
  jobPosition: Output only. It's only effect when the job is in QUEUED
    state. If it's positive, it indicates the job's position in the job
    scheduler. It's 0 when the job is already scheduled.
  labels: Optional. One or more labels that you can add, to organize your
    jobs. Each label is a key-value pair, where both the key and the value
    are arbitrary strings that you supply. For more information, see the
    documentation on using labels.
  predictionInput: Input parameters to create a prediction job.
  predictionOutput: The current prediction job result.
  startTime: Output only. When the job processing was started.
  state: Output only. The detailed state of a job.
  trainingInput: Input parameters to create a training job.
  trainingOutput: The current training job result.
c                   8    \ rS rSrSrSrSrSrSrSr	Sr
S	rS
rSrg)'GoogleCloudMlV1Job.StateValueValuesEnumi  al  Output only. The detailed state of a job.

Values:
  STATE_UNSPECIFIED: The job state is unspecified.
  QUEUED: The job has been just created and processing has not yet begun.
  PREPARING: The service is preparing to run the job.
  RUNNING: The job is in progress.
  SUCCEEDED: The job completed successfully.
  FAILED: The job failed. `error_message` should contain the details of
    the failure.
  CANCELLING: The job is being cancelled. `error_message` should describe
    the reason for the cancellation.
  CANCELLED: The job has been cancelled. `error_message` should describe
    the reason for the cancellation.
r   r   r   r,   rA   rB   rC   rD   r   Nr  r   r"   r#   r  rV    r  r"   r  r   c                   f    \ rS rSrSr " S S\R                  5      r\R                  " SSSS9r	Sr
g	)
GoogleCloudMlV1Job.LabelsValuei  a  Optional. One or more labels that you can add, to organize your jobs.
Each label is a key-value pair, where both the key and the value are
arbitrary strings that you supply. For more information, see the
documentation on using labels.

Messages:
  AdditionalProperty: An additional property for a LabelsValue object.

Fields:
  additionalProperties: Additional properties of type LabelsValue
c                   `    \ rS rSrSr\R                  " S5      r\R                  " S5      rSr	g)1GoogleCloudMlV1Job.LabelsValue.AdditionalPropertyi  An additional property for a LabelsValue object.

Fields:
  key: Name of the additional property.
  value: A string attribute.
r   r   r   Nr  r   r"   r#   r$   rZ    r  r"   r$   r   Tr&   r   Nr(   r   r"   r#   LabelsValuerX    s2    
	'Y.. 	' %112FTXYr"   r\  r   r   r,   rA   r   rB   r   rC   rD   rE   rF   GoogleCloudMlV1PredictionInputrG   GoogleCloudMlV1PredictionOutputrH   r   r   GoogleCloudMlV1TrainingInputr   GoogleCloudMlV1TrainingOutputr   r   N)!r   r   r   r   r   r   rX   r  r   r-   r)   r\  r   r   r   errorMessager/   etagr   explanationInputexplanationOutputjobIdr7   jobPositionlabelspredictionInputpredictionOutputr   rZ   r-  trainingInputtrainingOutputr!   r   r"   r#   rT  rT  a  sU   &PY^^ 2 !!"89ZI%% Z :Z4 $$Q'*!!!$'&&q),			a	 $++,MqQ,,-OQRS



"%&&q)+!!-3&**+KRP/++,MrR##B')


4b
9%(()GL-))*I2N.r"   rT  c                   `    \ rS rSrSr\R                  " SSSS9r\R                  " S5      r	Sr
g	)
GoogleCloudMlV1ListJobsResponsei  zResponse message for the ListJobs method.

Fields:
  jobs: The list of jobs.
  nextPageToken: Optional. Pass this token as the `page_token` field of the
    request for a subsequent call.
rT  r   Tr&   r   r   N)r   r   r   r   r   r   r   jobsr   nextPageTokenr!   r   r"   r#   rm  rm    s.     
		 4a$	G$''*-r"   rm  c                   `    \ rS rSrSr\R                  " SSSS9r\R                  " S5      r	Sr
g	)
$GoogleCloudMlV1ListLocationsResponsei  zA GoogleCloudMlV1ListLocationsResponse object.

Fields:
  locations: Locations where at least one type of CMLE capability is
    available.
  nextPageToken: Optional. Pass this token as the `page_token` field of the
    request for a subsequent call.
GoogleCloudMlV1Locationr   Tr&   r   r   N)r   r   r   r   r   r   r   	locationsr   ro  r!   r   r"   r#   rq  rq    s.     $$%>DQ)''*-r"   rq  c                   `    \ rS rSrSr\R                  " SSSS9r\R                  " S5      r	Sr
g	)
!GoogleCloudMlV1ListModelsResponsei  zResponse message for the ListModels method.

Fields:
  models: The list of models.
  nextPageToken: Optional. Pass this token as the `page_token` field of the
    request for a subsequent call.
GoogleCloudMlV1Modelr   Tr&   r   r   N)r   r   r   r   r   r   r   modelsr   ro  r!   r   r"   r#   ru  ru    s.     !!"8!dK&''*-r"   ru  c                       \ rS rSrSrSrg)'GoogleCloudMlV1ListOptimalTrialsRequesti  z6The request message for the ListTrials service method.r   Nr   r   r"   r#   ry  ry    s    ?r"   ry  c                   <    \ rS rSrSr\R                  " SSSS9rSrg)	(GoogleCloudMlV1ListOptimalTrialsResponsei  a-  The response message for the ListOptimalTrials method.

Fields:
  trials: The pareto-optimal trials for multiple objective study or the
    optimal trial for single objective study. The definition of pareto-
    optimal can be checked in wiki page.
    https://en.wikipedia.org/wiki/Pareto_efficiency
GoogleCloudMlV1Trialr   Tr&   r   N	r   r   r   r   r   r   r   trialsr!   r   r"   r#   r{  r{    s     !!"8!dK&r"   r{  c                   <    \ rS rSrSr\R                  " SSSS9rSrg)	"GoogleCloudMlV1ListStudiesResponsei  zjA GoogleCloudMlV1ListStudiesResponse object.

Fields:
  studies: The studies associated with the project.
GoogleCloudMlV1Studyr   Tr&   r   N)	r   r   r   r   r   r   r   studiesr!   r   r"   r#   r  r    s     ""#91tL'r"   r  c                   <    \ rS rSrSr\R                  " SSSS9rSrg)	!GoogleCloudMlV1ListTrialsResponsei  ziThe response message for the ListTrials method.

Fields:
  trials: The trials associated with the study.
r|  r   Tr&   r   Nr}  r   r"   r#   r  r    s     !!"8!dK&r"   r  c                   `    \ rS rSrSr\R                  " S5      r\R                  " SSSS9r	Sr
g	)
#GoogleCloudMlV1ListVersionsResponsei  zResponse message for the ListVersions method.

Fields:
  nextPageToken: Optional. Pass this token as the `page_token` field of the
    request for a subsequent call.
  versions: The list of versions.
r   GoogleCloudMlV1Versionr   Tr&   r   N)r   r   r   r   r   r   r   ro  r   versionsr!   r   r"   r#   r  r    s.     ''*-##$<a$O(r"   r  c                   `    \ rS rSrSr\R                  " SSSS9r\R                  " S5      r	Sr
g	)
rr  i)  zA GoogleCloudMlV1Location object.

Fields:
  capabilities: Capabilities available in the location.
  name: A string attribute.
r   r   Tr&   r   r   N)r   r   r   r   r   r   r   capabilitiesr   r   r!   r   r"   r#   rr  rr  )  s/     ''(CQQUV,			q	!$r"   rr  c                   b    \ rS rSrSr\R                  " S\R                  R                  S9r	Sr
g)GoogleCloudMlV1ManualScalingi5  aY  Options for manually scaling a model.

Fields:
  nodes: The number of nodes to allocate for this model. These nodes are
    always up, starting from the time the model is deployed, so the cost of
    operating this model will be proportional to `nodes` * number of hours
    since last billing cycle plus the cost for each prediction performed.
r   r5   r   N)r   r   r   r   r   r   r7   r8   r9   nodesr!   r   r"   r#   r  r  5  s'     
 
 I,=,=,C,C
D%r"   r  c                       \ rS rSrSr\R                  " S5      r\R                  " SSSS9r	\R                  " S5      rS	rg
)r_   iB  aZ  A message representing a measurement.

Fields:
  elapsedTime: Output only. Time that the trial has been running at the
    point of this measurement.
  metrics: Provides a list of metrics that act as inputs into the objective
    function.
  stepCount: The number of steps a machine learning model has been trained
    for. Must be non-negative.
r    GoogleCloudMlV1MeasurementMetricr   Tr&   r,   r   N)r   r   r   r   r   r   r   elapsedTimer   rf   r7   	stepCountr!   r   r"   r#   r_   r_   B  s?    	 %%a(+""#EqSWX'$$Q')r"   r_   c                   `    \ rS rSrSr\R                  " S5      r\R                  " S5      r	Sr
g)r  iS  zA message representing a metric in the measurement.

Fields:
  metric: Required. Metric name.
  value: Required. The value for this metric.
r   r   r   N)r   r   r   r   r   r   r   metricry   r    r!   r   r"   r#   r  r  S  s)       #&


q
!%r"   r  c                       \ rS rSrSr " S S\R                  5      r\R                  " SS5      r	\R                  " S\R                  R                  S9rSrg	)
rd   i_  ab  MetricSpec contains the specifications to use to calculate the desired
nodes count when autoscaling is enabled.

Enums:
  NameValueValuesEnum: metric name.

Fields:
  name: metric name.
  target: Target specifies the target value for the given metric; once real
    metric deviates from the threshold by a certain percentage, the node
    count changes.
c                   $    \ rS rSrSrSrSrSrSrg)-GoogleCloudMlV1MetricSpec.NameValueValuesEnumim  zmetric name.

Values:
  METRIC_NAME_UNSPECIFIED: Unspecified MetricName.
  CPU_USAGE: CPU usage.
  GPU_DUTY_CYCLE: GPU duty cycle.
r   r   r   r   N)	r   r   r   r   r   METRIC_NAME_UNSPECIFIED	CPU_USAGEGPU_DUTY_CYCLEr!   r   r"   r#   NameValueValuesEnumr  m  s      INr"   r  r   r   r5   r   N)r   r   r   r   r   r   rX   r  rZ   r   r7   r8   r9   targetr!   r   r"   r#   rd   rd   _  sJ    
INN 
 
		2A	6$!!!Y->->-D-DE&r"   rd   c                      \ rS rSrSr\R                  " S5       " S S\R                  5      5       r	\R                  " SS5      r\R                  " S5      r\R                  " S	5      r\R                  " SS
5      r\R                  " S5      r\R$                  " S5      r\R$                  " S5      r\R                  " SSS9rSrg)rv  i}  a   Represents a machine learning solution. A model can have multiple
versions, each of which is a deployed, trained model ready to receive
prediction requests. The model itself is just a container.

Messages:
  LabelsValue: Optional. One or more labels that you can add, to organize
    your models. Each label is a key-value pair, where both the key and the
    value are arbitrary strings that you supply. For more information, see
    the documentation on using labels. Note that this field is not updatable
    for mls1* models.

Fields:
  defaultVersion: Output only. The default version of the model. This
    version will be used to handle prediction requests that do not specify a
    version. You can change the default version by calling
    projects.models.versions.setDefault.
  description: Optional. The description specified for the model when it was
    created.
  etag: `etag` is used for optimistic concurrency control as a way to help
    prevent simultaneous updates of a model from overwriting each other. It
    is strongly suggested that systems make use of the `etag` in the read-
    modify-write cycle to perform model updates in order to avoid race
    conditions: An `etag` is returned in the response to `GetModel`, and
    systems are expected to put that etag in the request to `UpdateModel` to
    ensure that their change will be applied to the model as intended.
  labels: Optional. One or more labels that you can add, to organize your
    models. Each label is a key-value pair, where both the key and the value
    are arbitrary strings that you supply. For more information, see the
    documentation on using labels. Note that this field is not updatable for
    mls1* models.
  name: Required. The name specified for the model when it was created. The
    model name must be unique within the project it is created in.
  onlinePredictionConsoleLogging: Optional. If true, online prediction nodes
    send `stderr` and `stdout` streams to Cloud Logging. These can be more
    verbose than the standard access logs (see `onlinePredictionLogging`)
    and can incur higher cost. However, they are helpful for debugging. Note
    that [logs may incur a cost](/stackdriver/pricing), especially if your
    project receives prediction requests at a high QPS. Estimate your costs
    before enabling this option. Default is false.
  onlinePredictionLogging: Optional. If true, online prediction access logs
    are sent to Cloud Logging. These logs are like standard server access
    logs, containing information like timestamp and latency for each
    request. Note that [logs may incur a cost](/stackdriver/pricing),
    especially if your project receives prediction requests at a high
    queries per second rate (QPS). Estimate your costs before enabling this
    option. Default is false.
  regions: Optional. The list of regions where the model is going to be
    deployed. Only one region per model is supported. Defaults to 'us-
    central1' if nothing is set. See the available regions for AI Platform
    services. Note: * No matter where a model is deployed, it can always be
    accessed by users from anywhere, both for online and batch prediction. *
    The region for a batch prediction job is set by the region field when
    submitting the batch prediction job and does not take its value from
    this field.
r   c                   f    \ rS rSrSr " S S\R                  5      r\R                  " SSSS9r	Sr
g	)
 GoogleCloudMlV1Model.LabelsValuei  a  Optional. One or more labels that you can add, to organize your
models. Each label is a key-value pair, where both the key and the value
are arbitrary strings that you supply. For more information, see the
documentation on using labels. Note that this field is not updatable for
mls1* models.

Messages:
  AdditionalProperty: An additional property for a LabelsValue object.

Fields:
  additionalProperties: Additional properties of type LabelsValue
c                   `    \ rS rSrSr\R                  " S5      r\R                  " S5      rSr	g)3GoogleCloudMlV1Model.LabelsValue.AdditionalPropertyi  r[  r   r   r   Nr  r   r"   r#   r$   r    r  r"   r$   r   Tr&   r   Nr(   r   r"   r#   r\  r    2    	'Y.. 	' %112FTXYr"   r\  r  r   r   r,   rA   rB   rC   rD   rE   Tr&   r   N)r   r   r   r   r   r   r-   r   r)   r\  r   defaultVersionr   descriptionr/   rb  rg  r   rr   onlinePredictionConsoleLoggingonlinePredictionLoggingregionsr!   r   r"   r#   rv  rv  }  s    6p !!"89ZI%% Z :Z6 ))*BAF.%%a(+			a	 $!!-3&			q	!$#,#9#9!#< %2215!!!d3'r"   rv  c                   >    \ rS rSrSr\R                  " SS5      rSrg)GoogleCloudMlV1NasJobOutputi  zThe output of Neural Archhitecture Search (NAS) jobs.

Fields:
  multiTrialJobOutputs: The output of a multi-trial Neural Architecture
    Search (NAS) job.
/GoogleCloudMlV1NasJobOutputMultiTrialJobOutputsr   r   N)	r   r   r   r   r   r   r   multiTrialJobOutputsr!   r   r"   r#   r  r    s     #//0acder"   r  c                   B   \ rS rSrSr " S S\R                  5      r\R                  " SSSS9r	\R                  " S	5      r\R                  " SS
5      r\R                  " S5      r\R                  " S5      r\R                  " SS5      r\R                  " S5      rSrg).GoogleCloudMlV1NasJobOutputMultiTrialJobOutputi  a~  The output of Multi-trial Neural Architecture Search (NAS) jobs.

Enums:
  StateValueValuesEnum: Output only. The detailed state of the trial.

Fields:
  allMetrics: All objective metrics for this Neural Architecture Search
    (NAS) job.
  endTime: Output only. End time for the trial.
  finalMetric: The final objective metric seen for this Neural Architecture
    Search (NAS) job.
  nasParamsStr: The parameters that are associated with this Neural
    Architecture Search (NAS) job.
  startTime: Output only. Start time for the trial.
  state: Output only. The detailed state of the trial.
  trialId: The trial id for these results.
c                   8    \ rS rSrSrSrSrSrSrSr	Sr
S	rS
rSrg)CGoogleCloudMlV1NasJobOutputMultiTrialJobOutput.StateValueValuesEnumi  r  r   r   r   r,   rA   rB   rC   rD   r   Nr  r   r"   r#   r  r    r  r"   r  @GoogleCloudMlV1NasJobOutputMultiTrialJobOutputNasParameterMetricr   Tr&   r   r,   rA   rB   rC   rD   r   N)r   r   r   r   r   r   rX   r  r   r(  r   r   r*  nasParamsStrr   rZ   r-  r.  r!   r   r"   r#   r  r    s    $Y^^ 2 %%&hjkvz{*!!!$'&&'iklm+&&q),##A&)


4a
8%!!!$'r"   r  c                       \ rS rSrSr\R                  " S5       " S S\R                  5      5       r	\R                  " SS5      r\R                  " S5      r\R                  " S5      r\R                  " S	5      rS
rg)r  i  a  An observed value of a metric of the trial.

Messages:
  MetricsValue: Reported metrics other than objective and model_flops

Fields:
  metrics: Reported metrics other than objective and model_flops
  modelFlops: The model flops associated with the `objective_value`.
  objectiveValue: The objective value at this training step.
  trainingStep: The global training step for this metric.
r   c                   f    \ rS rSrSr " S S\R                  5      r\R                  " SSSS9r	Sr
g	)
MGoogleCloudMlV1NasJobOutputMultiTrialJobOutputNasParameterMetric.MetricsValuei)  zReported metrics other than objective and model_flops

Messages:
  AdditionalProperty: An additional property for a MetricsValue object.

Fields:
  additionalProperties: Additional properties of type MetricsValue
c                   `    \ rS rSrSr\R                  " S5      r\R                  " S5      r	Sr
g)`GoogleCloudMlV1NasJobOutputMultiTrialJobOutputNasParameterMetric.MetricsValue.AdditionalPropertyi4  zAn additional property for a MetricsValue object.

Fields:
  key: Name of the additional property.
  value: A number attribute.
r   r   r   N)r   r   r   r   r   r   r   r   ry   r    r!   r   r"   r#   r$   r  4  s)    
 !!!$c""1%er"   r$   r   Tr&   r   Nr(   r   r"   r#   MetricsValuer  )  s2    	&Y.. 	& %112FTXYr"   r  r   r   r,   rA   r   N)r   r   r   r   r   r   r-   r   r)   r  r   rf   ry   
modelFlopsr1  r7   r2  r!   r   r"   r#   r  r    s{    
 !!"89ZY&& Z :Z. "">15'##A&*''*.''*,r"   r  c                   <    \ rS rSrSr\R                  " SSSS9rSrg)	r  iG  zThe list of all MultiTrialJobOutput.

Fields:
  multiTrialJobOutput: A GoogleCloudMlV1NasJobOutputMultiTrialJobOutput
    attribute.
r  r   Tr&   r   N)	r   r   r   r   r   r   r   multiTrialJobOutputr!   r   r"   r#   r  r  G  s!     "../_abmqrr"   r  c                       \ rS rSrSr\R                  " SS5      r\R                  " SS5      r\R                  " S5      r
\R                  " S5      rS	rg
)GoogleCloudMlV1NasSpeciR  a  Spec for Neural Architecture Search (NAS) jobs.

Fields:
  multiTrialAlgorithmSpec: The spec of multi-trial algorithms.
  oneShotAlgorithmSpec: The spec of one-shot algorithms.
  previousNasJobId: The previous NAS job ID to resume search. The
    `search_space_spec` needs to be the same between this and previous NAS
    job and its job state is `FINISHED` or `CANCELLED`.
  searchSpaceSpec: Required. It defines the search space for Neural
    Architecture Search (NAS).
-GoogleCloudMlV1NasSpecMultiTrialAlgorithmSpecr   *GoogleCloudMlV1NasSpecOneShotAlgorithmSpecr   r,   rA   r   N)r   r   r   r   r   r   r   multiTrialAlgorithmSpeconeShotAlgorithmSpecr   previousNasJobIdsearchSpaceSpecr!   r   r"   r#   r  r  R  sT    
 &223bdef"//0\^_`**1-))!,/r"   r  c                      \ rS rSrSr " S S\R                  5      r\R                  " S\R                  R                  S9r\R                  " S\R                  R                  S9r\R                  " S\R                  R                  S9r\R                  " S	\R                  R                  S9r\R                  " SS
5      r\R"                  " S5      rSrg)r  ie  a\  The spec of multi-trial Neural Architecture Search (NAS).

Enums:
  MultiTrialAlgorithmValueValuesEnum: Optional. The multi-trial Neural
    Architecture Search (NAS) algorithm type. Defaults to
    `NAS_MULTI_TRIAL_ALGORITHM_REINFORCEMENT_LEARNING`.

Fields:
  initialIgnoredModelCount: If non-zero, it specifies the number of first
    models whose rewards will be ignored.
  maxFailedNasTrials: Optional. It decides when a Neural Architecture Search
    (NAS) job should fail. Defaults to zero.
  maxNasTrials: Optional. How many Neural Architecture Search (NAS) trials
    should be attempted.
  maxParallelNasTrials: Required. The number of Neural Architecture Search
    (NAS) trials to run concurrently.
  multiTrialAlgorithm: Optional. The multi-trial Neural Architecture Search
    (NAS) algorithm type. Defaults to
    `NAS_MULTI_TRIAL_ALGORITHM_REINFORCEMENT_LEARNING`.
  nasTargetRewardMetric: Required. The TensorFlow summary tag that the
    controller tries to optimize. Its value needs to be consistent with the
    TensorFlow summary tag that is reported by trainer (customer provided
    dockers).
c                   (    \ rS rSrSrSrSrSrSrSr	g)	PGoogleCloudMlV1NasSpecMultiTrialAlgorithmSpec.MultiTrialAlgorithmValueValuesEnumi  a  Optional. The multi-trial Neural Architecture Search (NAS) algorithm
type. Defaults to `NAS_MULTI_TRIAL_ALGORITHM_REINFORCEMENT_LEARNING`.

Values:
  MULTI_TRIAL_ALGORITHM_UNSPECIFIED: <no description>
  REINFORCEMENT_LEARNING: The Reinforcement Learning Algorithm for Multi-
    trial Neural Architecture Search (NAS).
  GRID_SEARCH: The Grid Search Algorithm for Multi-trial Neural
    Architecture Search (NAS).
  REGULARIZED_EVOLUTION: The Regularized evolution Algorithm for Multi-
    trial Neural Architecture Search (NAS).
r   r   r   r,   r   N)
r   r   r   r   r   !MULTI_TRIAL_ALGORITHM_UNSPECIFIEDREINFORCEMENT_LEARNINGr8  REGULARIZED_EVOLUTIONr!   r   r"   r#   "MultiTrialAlgorithmValueValuesEnumr    s      )*%Kr"   r  r   r5   r   r,   rA   rB   rC   r   N)r   r   r   r   r   r   rX   r  r7   r8   r9   initialIgnoredModelCountmaxFailedNasTrialsmaxNasTrialsmaxParallelNasTrialsrZ   multiTrialAlgorithmr   nasTargetRewardMetricr!   r   r"   r#   r  r  e  s    29>> $ '33Ay?P?P?V?VW --a9J9J9P9PQ''93D3D3J3JK,"//9;L;L;R;RS!++,PRST#//2r"   r  c                   h    \ rS rSrSr " S S\R                  5      r\R                  " SS5      r	Sr
g)r  i  a  The spec of one shot Neural Architecture Search (NAS).

Enums:
  OneShotAlgorithmValueValuesEnum: Optional. The one-shot Neural
    Architecture Search (NAS) algorithm type. Defaults to
    `ONE_SHOT_ALGORITHM_REINFORCEMENT_LEARNING`.

Fields:
  oneShotAlgorithm: Optional. The one-shot Neural Architecture Search (NAS)
    algorithm type. Defaults to `ONE_SHOT_ALGORITHM_REINFORCEMENT_LEARNING`.
c                        \ rS rSrSrSrSrSrg)JGoogleCloudMlV1NasSpecOneShotAlgorithmSpec.OneShotAlgorithmValueValuesEnumi  a0  Optional. The one-shot Neural Architecture Search (NAS) algorithm
type. Defaults to `ONE_SHOT_ALGORITHM_REINFORCEMENT_LEARNING`.

Values:
  ONE_SHOT_ALGORITHM_UNSPECIFIED: <no description>
  REINFORCEMENT_LEARNING: The Reinforcement Learning Algorithm for one-
    shot Neural Architecture Search (NAS).
r   r   r   N)r   r   r   r   r   ONE_SHOT_ALGORITHM_UNSPECIFIEDr  r!   r   r"   r#   OneShotAlgorithmValueValuesEnumr    s     &'"r"   r  r   r   N)r   r   r   r   r   r   rX   r  rZ   oneShotAlgorithmr!   r   r"   r#   r  r    s-    

	 
 (()JANr"   r  c                      \ rS rSrSr " S S\R                  5      r\R                  " S5       " S S\R                  5      5       r\R                  " S5      r\R                  " S	5      r\R                  " S
5      r\R"                  " SS5      r\R                  " S5      r\R(                  " SS5      r\R,                  " S5      r\R                  " S5      r\R"                  " SS5      rSrg) GoogleCloudMlV1OperationMetadatai  aF  Represents the metadata of the long-running operation.

Enums:
  OperationTypeValueValuesEnum: The operation type.

Messages:
  LabelsValue: The user labels, inherited from the model or the model
    version being operated on.

Fields:
  createTime: The time the operation was submitted.
  endTime: The time operation processing completed.
  isCancellationRequested: Indicates whether a request to cancel this
    operation has been made.
  labels: The user labels, inherited from the model or the model version
    being operated on.
  modelName: Contains the name of the model associated with the operation.
  operationType: The operation type.
  projectNumber: Contains the project number associated with the operation.
  startTime: The time operation processing started.
  version: Contains the version associated with the operation.
c                   4    \ rS rSrSrSrSrSrSrSr	Sr
S	rS
rg)=GoogleCloudMlV1OperationMetadata.OperationTypeValueValuesEnumi  a  The operation type.

Values:
  OPERATION_TYPE_UNSPECIFIED: Unspecified operation type.
  CREATE_VERSION: An operation to create a new version.
  DELETE_VERSION: An operation to delete an existing version.
  DELETE_MODEL: An operation to delete an existing model.
  UPDATE_MODEL: An operation to update an existing model.
  UPDATE_VERSION: An operation to update an existing version.
  UPDATE_CONFIG: An operation to update project configuration.
r   r   r   r,   rA   rB   rC   r   N)r   r   r   r   r   OPERATION_TYPE_UNSPECIFIEDCREATE_VERSIONDELETE_VERSIONDELETE_MODELUPDATE_MODELUPDATE_VERSIONUPDATE_CONFIGr!   r   r"   r#   OperationTypeValueValuesEnumr    s-    
 "#NNLLNMr"   r  r   c                   f    \ rS rSrSr " S S\R                  5      r\R                  " SSSS9r	Sr
g	)
,GoogleCloudMlV1OperationMetadata.LabelsValuei  zThe user labels, inherited from the model or the model version being
operated on.

Messages:
  AdditionalProperty: An additional property for a LabelsValue object.

Fields:
  additionalProperties: Additional properties of type LabelsValue
c                   `    \ rS rSrSr\R                  " S5      r\R                  " S5      rSr	g)?GoogleCloudMlV1OperationMetadata.LabelsValue.AdditionalPropertyi  r[  r   r   r   Nr  r   r"   r#   r$   r    r  r"   r$   r   Tr&   r   Nr(   r   r"   r#   r\  r    r  r"   r\  r   r   r,   rA   rB   rC   rD   rE   r  rF   r   N)r   r   r   r   r   r   rX   r  r   r-   r)   r\  r   r   r   rr   isCancellationRequestedr   rg  r   rZ   operationTyper7   projectNumberr   versionr!   r   r"   r#   r  r    s    .Y^^ ( !!"89ZI%% Z :Z0 $$Q'*!!!$'%2215!!-3&##A&)%%&DaH-((+-##A&)""#;Q?'r"   r  c                   h   \ rS rSrSr " S S\R                  5      r " S S\R                  5      r\R                  " SSS	9r
\R                  " S
SS	9r\R                  " S5      r\R                  " S5      r\R                  " S5      r\R                   " SS5      r\R                   " SS5      rSrg)rC  i  a  Represents a single hyperparameter to optimize.

Enums:
  ScaleTypeValueValuesEnum: Optional. How the parameter should be scaled to
    the hypercube. Leave unset for categorical parameters. Some kind of
    scaling is strongly recommended for real or integral parameters (e.g.,
    `UNIT_LINEAR_SCALE`).
  TypeValueValuesEnum: Required. The type of the parameter.

Fields:
  categoricalValues: Required if type is `CATEGORICAL`. The list of possible
    categories.
  discreteValues: Required if type is `DISCRETE`. A list of feasible points.
    The list should be in strictly increasing order. For instance, this
    parameter might have possible settings of 1.5, 2.5, and 4.0. This list
    should not contain more than 1,000 values.
  maxValue: Required if type is `DOUBLE` or `INTEGER`. This field should be
    unset if type is `CATEGORICAL`. This value should be integers if type is
    `INTEGER`.
  minValue: Required if type is `DOUBLE` or `INTEGER`. This field should be
    unset if type is `CATEGORICAL`. This value should be integers if type is
    INTEGER.
  parameterName: Required. The parameter name must be unique amongst all
    ParameterConfigs in a HyperparameterSpec message. E.g., "learning_rate".
  scaleType: Optional. How the parameter should be scaled to the hypercube.
    Leave unset for categorical parameters. Some kind of scaling is strongly
    recommended for real or integral parameters (e.g., `UNIT_LINEAR_SCALE`).
  type: Required. The type of the parameter.
c                   (    \ rS rSrSrSrSrSrSrSr	g)	5GoogleCloudMlV1ParameterSpec.ScaleTypeValueValuesEnumi$  a  Optional. How the parameter should be scaled to the hypercube. Leave
unset for categorical parameters. Some kind of scaling is strongly
recommended for real or integral parameters (e.g., `UNIT_LINEAR_SCALE`).

Values:
  NONE: By default, no scaling is applied.
  UNIT_LINEAR_SCALE: Scales the feasible space to (0, 1) linearly.
  UNIT_LOG_SCALE: Scales the feasible space logarithmically to (0, 1). The
    entire feasible space must be strictly positive.
  UNIT_REVERSE_LOG_SCALE: Scales the feasible space "reverse"
    logarithmically to (0, 1). The result is that values close to the top
    of the feasible space are spread out more than points near the bottom.
    The entire feasible space must be strictly positive.
r   r   r   r,   r   N)
r   r   r   r   r   NONEUNIT_LINEAR_SCALEUNIT_LOG_SCALEUNIT_REVERSE_LOG_SCALEr!   r   r"   r#   ScaleTypeValueValuesEnumr  $  s     DNr"   r  c                   ,    \ rS rSrSrSrSrSrSrSr	Sr
g	)
0GoogleCloudMlV1ParameterSpec.TypeValueValuesEnumi8    Required. The type of the parameter.

Values:
  PARAMETER_TYPE_UNSPECIFIED: You must specify a valid type. Using this
    unspecified type will result in an error.
  DOUBLE: Type for real-valued parameters.
  INTEGER: Type for integral parameters.
  CATEGORICAL: The parameter is categorical, with a value chosen from the
    categories field.
  DISCRETE: The parameter is real valued, with a fixed set of feasible
    points. If `type==DISCRETE`, feasible_points must be provided, and
    {`min_value`, `max_value`} will be ignored.
r   r   r   r,   rA   r   Nr   r   r   r   r   PARAMETER_TYPE_UNSPECIFIEDDOUBLEINTEGERCATEGORICALDISCRETEr!   r   r"   r#   rV   r  8  #     "#FGKHr"   rV   r   Tr&   r   r,   rA   rB   rC   rD   r   N)r   r   r   r   r   r   rX   r  rV   r   categoricalValuesry   discreteValuesmaxValueminValueparameterNamerZ   	scaleTyper[   r!   r   r"   r#   rC  rC    s    < (INN (  ++A=''D9.!!!$(!!!$(''*-!!"<a@)			2A	6$r"   rC  c                   >    \ rS rSrSr\R                  " SS5      rSrg)GoogleCloudMlV1PredictRequestiU  zRequest for predictions to be issued against a trained model.

Fields:
  httpBody:  Required. The prediction request body. Refer to the [request
    body details section](#request-body-details) for more information on how
    to structure your request.
r	   r   r   Nr   r   r"   r#   r  r  U  s     ##$7;(r"   r  c                      \ rS rSrSr " S S\R                  5      r " S S\R                  5      r " S S\R                  5      r	\R                  " S	S
5      r\R                  " S5      r\R                  " SS5      r\R                  " SS5      r\R                  " S5      r\R$                  " SSS9r\R                  " S5      r\R$                  " S5      r\R                  " SS5      r\R$                  " S5      r\R$                  " S5      r\R$                  " S5      r\R$                  " S5      r\R$                  " SSS9r\R$                  " S5      r\R$                  " S5      r\R$                  " S5      rSrg)r]  ia  a  Represents input parameters for a prediction job.

Enums:
  DataFormatValueValuesEnum: Required. The format of the input data files.
  FrameworkValueValuesEnum: Optional. The framework used to train this
    model. Only needed if model_version is a GCS path. Otherwise the
    framework specified during version creation will be used.
  OutputDataFormatValueValuesEnum: Optional. Format of the output data
    files, defaults to JSON.

Fields:
  accelerator: Optional. The type and number of accelerators to be attached
    to each machine running the job.
  batchSize: Optional. Number of records per batch, defaults to 64. The
    service will buffer batch_size number of records in memory before
    invoking one Tensorflow prediction call internally. So take the record
    size and memory available into consideration when setting this
    parameter.
  dataFormat: Required. The format of the input data files.
  framework: Optional. The framework used to train this model. Only needed
    if model_version is a GCS path. Otherwise the framework specified during
    version creation will be used.
  initialWorkerCount: Optional. The initial number of workers to be used for
    parallel processing. Defaults to 0 if one wants the service to figure
    out the number. The actual number of workers being used may change after
    the job starts depending on the autoscaling policy.
  inputPaths: Required. The Cloud Storage location of the input data files.
    May contain wildcards.
  maxWorkerCount: Optional. The maximum number of workers to be used for
    parallel processing. Defaults to 10 if not specified.
  modelName: Use this field if you want to use the default version for the
    specified model. The string must use the following format:
    `"projects/YOUR_PROJECT/models/YOUR_MODEL"`
  outputDataFormat: Optional. Format of the output data files, defaults to
    JSON.
  outputPath: Required. The output Google Cloud Storage location.
  region: Required. The Google Compute Engine region to run the prediction
    job in. See the available regions for AI Platform services.
  runtimeVersion: Optional. The AI Platform runtime version to use for this
    batch prediction. If not set, AI Platform will pick the runtime version
    used during the CreateVersion request for this model version, or choose
    the latest stable version when model version information is not
    available such as when the model is specified by uri.
  signatureName: Optional. The name of the signature defined in the
    SavedModel to use for this job. Please refer to
    [SavedModel](https://tensorflow.github.io/serving/serving_basic.html)
    for information about how to use signatures. Defaults to [DEFAULT_SERVIN
    G_SIGNATURE_DEF_KEY](https://www.tensorflow.org/api_docs/python/tf/saved
    _model/signature_constants) , which is "serving_default".
  tagsOverride: Optional. The set of tags to select which meta graph defined
    in the SavedModel to use for this job. Please refer to
    [SavedModel](https://www.tensorflow.org/serving/serving_basic) for
    information about how to use tags. Overrides the default tags when
    predicting from a deployed model version. When predicting from a model
    directory, the tag defaults to [SERVING](https://www.tensorflow.org/api_
    docs/python/tf/saved_model/tag_constants) , which is "serve".
  uri: Use this field if you want to specify a Google Cloud Storage path for
    the model to use.
  versionName: Use this field if you want to specify a version of the model
    to use. The string is formatted the same way as `model_version`, with
    the addition of the version information:
    `"projects/YOUR_PROJECT/models/YOUR_MODEL/versions/YOUR_VERSION"`
  workerType: Optional. The type of virtual machine to use for batch
    prediction job's worker nodes. It supports all machine types available
    on GCP ( https://cloud.google.com/compute/docs/machine-types), subject
    to the availability in the specific region the job runs.
c                   4    \ rS rSrSrSrSrSrSrSr	Sr
S	rS
rg)8GoogleCloudMlV1PredictionInput.DataFormatValueValuesEnumi  a  Required. The format of the input data files.

Values:
  DATA_FORMAT_UNSPECIFIED: Unspecified format.
  JSON: Each line of the file is a JSON dictionary representing one
    record.
  TEXT: Deprecated. Use JSON instead.
  TF_RECORD: The source file is a TFRecord file. Currently available only
    for input data.
  TF_RECORD_GZIP: The source file is a GZIP-compressed TFRecord file.
    Currently available only for input data.
  FILE_LIST: Each line of the file is the location of an instance to
    process. Currently available only for input data.
  CSV: Values are comma-separated rows, with keys in a separate file.
    Currently available only for output data.
r   r   r   r,   rA   rB   rC   r   Nr   r   r   r   r   r   r   TEXT	TF_RECORDTF_RECORD_GZIP	FILE_LISTCSVr!   r   r"   r#   r   r    -       DDINI
Cr"   r   c                   (    \ rS rSrSrSrSrSrSrSr	g)	7GoogleCloudMlV1PredictionInput.FrameworkValueValuesEnumi  r   r   r   r   r,   r   Nr   r   r"   r#   r   r    r   r"   r   c                   4    \ rS rSrSrSrSrSrSrSr	Sr
S	rS
rg)>GoogleCloudMlV1PredictionInput.OutputDataFormatValueValuesEnumi  a  Optional. Format of the output data files, defaults to JSON.

Values:
  DATA_FORMAT_UNSPECIFIED: Unspecified format.
  JSON: Each line of the file is a JSON dictionary representing one
    record.
  TEXT: Deprecated. Use JSON instead.
  TF_RECORD: The source file is a TFRecord file. Currently available only
    for input data.
  TF_RECORD_GZIP: The source file is a GZIP-compressed TFRecord file.
    Currently available only for input data.
  FILE_LIST: Each line of the file is the location of an instance to
    process. Currently available only for input data.
  CSV: Values are comma-separated rows, with keys in a separate file.
    Currently available only for output data.
r   r   r   r,   rA   rB   rC   r   Nr  r   r"   r#   r   r    r  r"   r   r<   r   r   r,   rA   rB   rC   Tr&   rD   rE   rF   rG   rH   r   r   r   r   r   r
   r   N) r   r   r   r   r   r   rX   r   r   r   r   r   r7   r   rZ   r   r~   r   r   r   r   r   r   
outputPathr   r   r   r   r   r   r   r!   r   r"   r#   r]  r]  a  s]   BH).. 2 "	 2 &&'I1M+$$Q')""#>B*!!"<a@) --a0$$Q6*))!,.##A&)(()JAN$$R(*  $&((,.''+-&&rD9,b!#%%b)+$$R(*r"   r]  c                       \ rS rSrSr\R                  " S5      r\R                  " S5      r	\R                  " S5      r\R                  " S5      rSrg)	r^  i  aF  Represents results of a prediction job.

Fields:
  errorCount: The number of data instances which resulted in errors.
  nodeHours: Node hours used by the batch prediction job.
  outputPath: The output Google Cloud Storage location provided at the job
    creation time.
  predictionCount: The number of generated predictions.
r   r   r,   rA   r   N)r   r   r   r   r   r   r7   r   ry   r   r   r  predictionCountr!   r   r"   r#   r^  r^    sI     %%a(*""1%)$$Q'***1-/r"   r^  c                       \ rS rSrSr\R                  " SS5      r\R                  " SSS9r	\R                  " SSS9r
\R                  " S	S
5      r\R                  " S5      r\R                  " S5      rSrg)GoogleCloudMlV1ReplicaConfigi  a
  Represents the configuration for a replica in a cluster.

Fields:
  acceleratorConfig: Represents the type and number of accelerators used by
    the replica. [Learn about restrictions on accelerator configurations for
    training.](/ai-platform/training/docs/using-gpus#compute-engine-machine-
    types-with-gpu)
  containerArgs: Arguments to the entrypoint command. The following rules
    apply for container_command and container_args: - If you do not supply
    command or args: The defaults defined in the Docker image are used. - If
    you supply a command but no args: The default EntryPoint and the default
    Cmd defined in the Docker image are ignored. Your command is run without
    any arguments. - If you supply only args: The default Entrypoint defined
    in the Docker image is run with the args that you supplied. - If you
    supply a command and args: The default Entrypoint and the default Cmd
    defined in the Docker image are ignored. Your command is run with your
    args. It cannot be set if custom container image is not provided. Note
    that this field and [TrainingInput.args] are mutually exclusive, i.e.,
    both cannot be set at the same time.
  containerCommand: The command with which the replica's custom container is
    run. If provided, it will override default ENTRYPOINT of the docker
    image. If not provided, the docker image's ENTRYPOINT is used. It cannot
    be set if custom container image is not provided. Note that this field
    and [TrainingInput.args] are mutually exclusive, i.e., both cannot be
    set at the same time.
  diskConfig: Represents the configuration of disk options.
  imageUri: The Docker image to run on the replica. This image must be in
    Container Registry. Learn more about [configuring custom
    containers](/ai-platform/training/docs/distributed-training-containers).
  tpuTfVersion: The AI Platform runtime version that includes a TensorFlow
    version matching the one used in the custom container. This field is
    required if the replica is a TPU worker that uses a custom container.
    Otherwise, do not specify this field. This must be a [runtime version
    that currently supports training with TPUs](/ml-
    engine/docs/tensorflow/runtime-version-list#tpu-support). Note that the
    version of TensorFlow included in a runtime version may differ from the
    numbering of the runtime version itself, because it may have a different
    [patch version](https://www.tensorflow.org/guide/version_compat#semantic
    _versioning_20). In this field, you must specify the runtime version
    (TensorFlow minor version). For example, if your custom container runs
    TensorFlow `1.x.y`, specify `1.x`.
r<   r   r   Tr&   r,   r   rA   rB   rC   r   N)r   r   r   r   r   r   r   acceleratorConfigr   containerArgscontainerCommand
diskConfigimageUritpuTfVersionr!   r   r"   r#   r  r    sw    )V  ,,-OQRS''D9-**1t<%%&A1E*""1%(&&q),r"   r  c                   `    \ rS rSrSr\R                  " S5      r\R                  " S5      r	Sr
g)#GoogleCloudMlV1RequestLoggingConfigiA  a  Configuration for logging request-response pairs to a BigQuery table.
Online prediction requests to a model version and the responses to these
requests are converted to raw strings and saved to the specified BigQuery
table. Logging is constrained by [BigQuery quotas and
limits](/bigquery/quotas). If your project exceeds BigQuery quotas or
limits, AI Platform Prediction does not log request-response pairs, but it
continues to serve predictions. If you are using [continuous
evaluation](/ml-engine/docs/continuous-evaluation/), you do not need to
specify this configuration manually. Setting up continuous evaluation
automatically enables logging of request-response pairs.

Fields:
  bigqueryTableName: Required. Fully qualified BigQuery table name in the
    following format: " project_id.dataset_name.table_name" The specified
    table must already exist, and the "Cloud ML Service Agent" for your
    project must have permission to write to it. The table must have the
    following [schema](/bigquery/docs/schemas): Field name Type Mode model
    STRING REQUIRED model_version STRING REQUIRED time TIMESTAMP REQUIRED
    raw_data STRING REQUIRED raw_prediction STRING NULLABLE groundtruth
    STRING NULLABLE
  samplingPercentage: Percentage of requests to be logged, expressed as a
    fraction from 0 to 1. For example, if you want to log 10% of requests,
    enter `0.1`. The sampling window is the lifetime of the model version.
    Defaults to 0.
r   r   r   N)r   r   r   r   r   r   r   bigqueryTableNamery   samplingPercentager!   r   r"   r#   r  r  A  s+    4  ++A. ++A.r"   r  c                   `    \ rS rSrSr\R                  " S5      r\R                  " S5      rSr	g)GoogleCloudMlV1RouteMapi`  a
  Specifies HTTP paths served by a custom container. AI Platform
Prediction sends requests to these paths on the container; the custom
container must run an HTTP server that responds to these requests with
appropriate responses. Read [Custom container requirements](/ai-
platform/prediction/docs/custom-container-requirements) for details on how
to create your container image to meet these requirements.

Fields:
  health: HTTP path on the container to send health checkss to. AI Platform
    Prediction intermittently sends GET requests to this path on the
    container's IP address and port to check that the container is healthy.
    Read more about [health checks](/ai-platform/prediction/docs/custom-
    container-requirements#checks). For example, if you set this field to
    `/bar`, then AI Platform Prediction intermittently sends a GET request
    to the `/bar` path on the port of your container specified by the first
    value of Version.container.ports. If you don't specify this field, it
    defaults to the following value: /v1/models/ MODEL/versions/VERSION The
    placeholders in this value are replaced as follows: * MODEL: The name of
    the parent Model. This does not include the
    "projects/PROJECT_ID/models/" prefix that the API returns in output; it
    is the bare model name, as provided to projects.models.create. *
    VERSION: The name of the model version. This does not include the
    "projects/PROJECT_ID /models/MODEL/versions/" prefix that the API
    returns in output; it is the bare version name, as provided to
    projects.models.versions.create.
  predict: HTTP path on the container to send prediction requests to. AI
    Platform Prediction forwards requests sent using projects.predict to
    this path on the container's IP address and port. AI Platform Prediction
    then returns the container's response in the API response. For example,
    if you set this field to `/foo`, then when AI Platform Prediction
    receives a prediction request, it forwards the request body in a POST
    request to the `/foo` path on the port of your container specified by
    the first value of Version.container.ports. If you don't specify this
    field, it defaults to the following value:
    /v1/models/MODEL/versions/VERSION:predict The placeholders in this value
    are replaced as follows: * MODEL: The name of the parent Model. This
    does not include the "projects/PROJECT_ID/models/" prefix that the API
    returns in output; it is the bare model name, as provided to
    projects.models.create. * VERSION: The name of the model version. This
    does not include the "projects/PROJECT_ID/models/MODEL/versions/" prefix
    that the API returns in output; it is the bare version name, as provided
    to projects.models.versions.create.
r   r   r   N)
r   r   r   r   r   r   r   healthpredictr!   r   r"   r#   r!  r!  `  s*    *X   #&!!!$'r"   r!  c                       \ rS rSrSrSrg)r   i  zAttributes credit by running a faster approximation to the TreeShap
method. Please refer to this link for more details:
https://blog.datadive.net/interpreting-random-forests/ This attribution
method is only supported for XGBoost models.
r   Nr   r   r"   r#   r   r         r"   r   c                   b    \ rS rSrSr\R                  " S\R                  R                  S9r	Sr
g)r   i  aG  An attribution method that approximates Shapley values for features that
contribute to the label being predicted. A sampling strategy is used to
approximate the value rather than considering all subsets of features.

Fields:
  numPaths: The number of feature permutations to consider when
    approximating the Shapley values.
r   r5   r   N)r   r   r   r   r   r   r7   r8   r9   numPathsr!   r   r"   r#   r   r     s'     ##Ay/@/@/F/FG(r"   r   c                      \ rS rSrSr " S S\R                  5      r\R                  " S5      r	\R                  " S5      r
\R                  " S\R                  R                  S9r\R                  " S	5      r\R"                  " SS
5      rSrg)GoogleCloudMlV1Schedulingi  a  All parameters related to scheduling of training jobs.

Enums:
  StrategyValueValuesEnum: Optional. TODO(b/148493578) : point to
    documentation when ready.

Fields:
  maxRunningTime: Optional. The maximum job running time, expressed in
    seconds. The field can contain up to nine fractional digits, terminated
    by `s`. If not specified, this field defaults to `604800s` (seven days).
    If the training job is still running after this duration, AI Platform
    Training cancels it. The duration is measured from when the job enters
    the `RUNNING` state; therefore it does not overlap with the duration
    limited by Scheduling.max_wait_time. For example, if you want to ensure
    your job runs for no more than 2 hours, set this field to `7200s` (2
    hours * 60 minutes / hour * 60 seconds / minute). If you submit your
    training job using the `gcloud` tool, you can [specify this field in a
    `config.yaml` file](/ai-platform/training/docs/training-
    jobs#formatting_your_configuration_parameters). For example: ```yaml
    trainingInput: scheduling: maxRunningTime: 7200s ```
  maxWaitTime: Optional. The maximum job wait time, expressed in seconds.
    The field can contain up to nine fractional digits, terminated by `s`.
    If not specified, there is no limit to the wait time. The minimum for
    this field is `1800s` (30 minutes). If the training job has not entered
    the `RUNNING` state after this duration, AI Platform Training cancels
    it. After the job begins running, it can no longer be cancelled due to
    the maximum wait time. Therefore the duration limited by this field does
    not overlap with the duration limited by Scheduling.max_running_time.
    For example, if the job temporarily stops running and retries due to a
    [VM restart](/ai-platform/training/docs/overview#restarts), this cannot
    lead to a maximum wait time cancellation. However, independently of this
    constraint, AI Platform Training might stop a job if there are too many
    retries due to exhausted resources in a region. The following example
    describes how you might use this field: To cancel your job if it doesn't
    start running within 1 hour, set this field to `3600s` (1 hour * 60
    minutes / hour * 60 seconds / minute). If the job is still in the
    `QUEUED` or `PREPARING` state after an hour of waiting, AI Platform
    Training cancels the job. If you submit your training job using the
    `gcloud` tool, you can [specify this field in a `config.yaml` file](/ai-
    platform/training/docs/training-
    jobs#formatting_your_configuration_parameters). For example: ```yaml
    trainingInput: scheduling: maxWaitTime: 3600s ```
  priority: Optional. Job scheduling will be based on this priority, which
    in the range [0, 1000]. The bigger the number, the higher the priority.
    Default to 0 if not set. If there are multiple jobs requesting same type
    of accelerators, the high priority job will be scheduled prior to ones
    with low priority.
  resilientToWorkerRestart: Optional. If true, reschedules an entire job if
    a worker gets restarted. This feature can be used by distributed
    training jobs that are not resilient to workers leaving and joining a
    job.
  strategy: Optional. TODO(b/148493578) : point to documentation when ready.
c                   $    \ rS rSrSrSrSrSrSrg)1GoogleCloudMlV1Scheduling.StrategyValueValuesEnumi  a  Optional. TODO(b/148493578) : point to documentation when ready.

Values:
  STRATEGY_UNSPECIFIED: Strategy will default to ON_DEMAND.
  ON_DEMAND: Regular on-demand provisioning strategy.
  LOW_COST: Low cost by making potential use of Preemptible resources.
r   r   r   r   N)	r   r   r   r   r   STRATEGY_UNSPECIFIED	ON_DEMANDLOW_COSTr!   r   r"   r#   StrategyValueValuesEnumr+    s     IHr"   r/  r   r   r,   r5   rA   rB   r   N)r   r   r   r   r   r   rX   r/  r   maxRunningTimemaxWaitTimer7   r8   r9   priorityrr   resilientToWorkerRestartrZ   strategyr!   r   r"   r#   r)  r)    s|    4l
	 
 ((+.%%a(+##Ay/@/@/F/FG(&33A6  !:A>(r"   r)  c                       \ rS rSrSrSrg)'GoogleCloudMlV1SetDefaultVersionRequesti  z2Request message for the SetDefaultVersion request.r   Nr   r   r"   r#   r6  r6    s    ;r"   r6  c                       \ rS rSrSr\R                  " SS5      r\R                  " S\R                  R                  S9r\R                  " S\R                  R                  S9rSrg	)
rN  i  a  Config for SmoothGrad approximation of gradients. When enabled, the
gradients are approximated by averaging the gradients from noisy samples in
the vicinity of the inputs. Adding noise can help improve the computed
gradients. See here for why https://arxiv.org/pdf/1706.03825.pdf

Fields:
  featureNoiseSigma: Alternatively, set this to use different noise_sigma
    per feature. One entry per feature. No noise is added to features that
    are not set.
  noiseSigma: If set, this std. deviation will be used to apply noise to all
    features.
  noisySampleCount: The number of gradient samples to use for approximation.
    The higher this number, the more accurate the gradient is, but the
    runtime complexity of IG increases by this factor as well.
r   r   r   r5   r,   r   N)r   r   r   r   r   r   r   featureNoiseSigmary   r8   rz   r   r7   r9   noisySampleCountr!   r   r"   r#   rN  rN    s[       ,,-OQRS##Ay/@/@/F/FG*++Ay7H7H7N7NOr"   rN  c                       \ rS rSrSrSrg)GoogleCloudMlV1StopTrialRequesti	  z)A GoogleCloudMlV1StopTrialRequest object.r   Nr   r   r"   r#   r;  r;  	  r   r"   r;  c                       \ rS rSrSr " S S\R                  5      r\R                  " S5      r	\R                  " S5      r
\R                  " S5      r\R                  " SS5      r\R                  " S	S
5      rSrg)r  i	  a  A message representing a Study.

Enums:
  StateValueValuesEnum: Output only. The detailed state of a study.

Fields:
  createTime: Output only. Time at which the study was created.
  inactiveReason: Output only. A human readable reason why the Study is
    inactive. This should be empty if a study is ACTIVE or COMPLETED.
  name: Output only. The name of a study.
  state: Output only. The detailed state of a study.
  studyConfig: Required. Configuration of the study.
c                   (    \ rS rSrSrSrSrSrSrSr	g)	)GoogleCloudMlV1Study.StateValueValuesEnumi	  a;  Output only. The detailed state of a study.

Values:
  STATE_UNSPECIFIED: The study state is unspecified.
  ACTIVE: The study is active.
  INACTIVE: The study is stopped due to an internal error.
  COMPLETED: The study is done when the service exhausts the parameter
    search space or max_trial_count is reached.
r   r   r   r,   r   N
r   r   r   r   r   r  ACTIVEINACTIVE	COMPLETEDr!   r   r"   r#   r  r>  	       FHIr"   r  r   r   r,   rA   GoogleCloudMlV1StudyConfigrB   r   N)r   r   r   r   r   r   rX   r  r   r   inactiveReasonr   rZ   r-  r   studyConfigr!   r   r"   r#   r  r  	  so    Y^^  $$Q'*((+.			q	!$


4a
8%&&'CQG+r"   r  c                       \ rS rSrSr " S S\R                  5      r\R                  " SS5      r	\R                  " SS5      r\R                  " SS	S
S9r\R                  " SSS
S9rSrg)rD  i4	  at  Represents configuration of a study.

Enums:
  AlgorithmValueValuesEnum: The search algorithm specified for the study.

Fields:
  algorithm: The search algorithm specified for the study.
  automatedStoppingConfig: Configuration for automated stopping of
    unpromising Trials.
  metrics: Metric specs for the study.
  parameters: Required. The set of parameters to tune.
c                   (    \ rS rSrSrSrSrSrSrSr	g)	3GoogleCloudMlV1StudyConfig.AlgorithmValueValuesEnumiB	  a  The search algorithm specified for the study.

Values:
  ALGORITHM_UNSPECIFIED: The default algorithm used by the Cloud AI
    Platform Vizier service.
  GAUSSIAN_PROCESS_BANDIT: Gaussian Process Bandit.
  GRID_SEARCH: Simple grid search within the feasible space. To use grid
    search, all parameters must be `INTEGER`, `CATEGORICAL`, or
    `DISCRETE`.
  RANDOM_SEARCH: Simple random search within the feasible space.
r   r   r   r,   r   N)
r   r   r   r   r   r7  GAUSSIAN_PROCESS_BANDITr8  r9  r!   r   r"   r#   r;  rI  B	  s    
 KMr"   r;  r   ri   r   $GoogleCloudMlV1StudyConfigMetricSpecr,   Tr&   'GoogleCloudMlV1StudyConfigParameterSpecrA   r   N)r   r   r   r   r   r   rX   r;  rZ   rD  r   automatedStoppingConfigrf   
parametersr!   r   r"   r#   rD  rD  4	  sn     " !!"<a@)%223[]^_""#I1W[\'%%&OQR]ab*r"   rD  c                       \ rS rSrSr " S S\R                  5      r\R                  " SS5      r	\R                  " S5      rSrg)	rK  iY	  zRepresents a metric to optimize.

Enums:
  GoalValueValuesEnum: Required. The optimization goal of the metric.

Fields:
  goal: Required. The optimization goal of the metric.
  metric: Required. The name of the metric.
c                   $    \ rS rSrSrSrSrSrSrg)8GoogleCloudMlV1StudyConfigMetricSpec.GoalValueValuesEnumid	  zRequired. The optimization goal of the metric.

Values:
  GOAL_TYPE_UNSPECIFIED: Goal Type will default to maximize.
  MAXIMIZE: Maximize the goal metric.
  MINIMIZE: Minimize the goal metric.
r   r   r   r   Nr>  r   r"   r#   rB  rQ  d	  s     HHr"   rB  r   r   r   N)r   r   r   r   r   r   rX   rB  rZ   rF  r   r  r!   r   r"   r#   rK  rK  Y	  s<    
INN 
 
		2A	6$  #&r"   rK  c                   
   \ rS rSrSr " S S\R                  5      r " S S\R                  5      r\R                  " SS5      r
\R                  " S S	S
S9r\R                  " SS5      r\R                  " SS5      r\R                  " SS5      r\R                  " S5      r\R                  " SS5      r\R                  " SS5      r\R                  " SS5      r\R(                  " SS5      r\R(                  " SS5      rSrg)rL  it	  a  Represents a single parameter to optimize.

Enums:
  ScaleTypeValueValuesEnum: How the parameter should be scaled. Leave unset
    for categorical parameters.
  TypeValueValuesEnum: Required. The type of the parameter.

Fields:
  categoricalValueSpec: The value spec for a 'CATEGORICAL' parameter.
  childParameterSpecs: A child node is active if the parameter's value
    matches the child node's matching_parent_values. If two items in
    child_parameter_specs have the same name, they must have disjoint
    matching_parent_values.
  discreteValueSpec: The value spec for a 'DISCRETE' parameter.
  doubleValueSpec: The value spec for a 'DOUBLE' parameter.
  integerValueSpec: The value spec for an 'INTEGER' parameter.
  parameter: Required. The parameter name must be unique amongst all
    ParameterSpecs.
  parentCategoricalValues: A
    GoogleCloudMlV1StudyConfigParameterSpecMatchingParentCategoricalValueSpe
    c attribute.
  parentDiscreteValues: A
    GoogleCloudMlV1StudyConfigParameterSpecMatchingParentDiscreteValueSpec
    attribute.
  parentIntValues: A
    GoogleCloudMlV1StudyConfigParameterSpecMatchingParentIntValueSpec
    attribute.
  scaleType: How the parameter should be scaled. Leave unset for categorical
    parameters.
  type: Required. The type of the parameter.
c                   (    \ rS rSrSrSrSrSrSrSr	g)	@GoogleCloudMlV1StudyConfigParameterSpec.ScaleTypeValueValuesEnumi	  aa  How the parameter should be scaled. Leave unset for categorical
parameters.

Values:
  SCALE_TYPE_UNSPECIFIED: By default, no scaling is applied.
  UNIT_LINEAR_SCALE: Scales the feasible space to (0, 1) linearly.
  UNIT_LOG_SCALE: Scales the feasible space logarithmically to (0, 1). The
    entire feasible space must be strictly positive.
  UNIT_REVERSE_LOG_SCALE: Scales the feasible space "reverse"
    logarithmically to (0, 1). The result is that values close to the top
    of the feasible space are spread out more than points near the bottom.
    The entire feasible space must be strictly positive.
r   r   r   r,   r   N)
r   r   r   r   r   SCALE_TYPE_UNSPECIFIEDr  r  r  r!   r   r"   r#   r  rT  	  s      Nr"   r  c                   ,    \ rS rSrSrSrSrSrSrSr	Sr
g	)
;GoogleCloudMlV1StudyConfigParameterSpec.TypeValueValuesEnumi	  r  r   r   r   r,   rA   r   Nr  r   r"   r#   rV   rW  	  r  r"   rV   ;GoogleCloudMlV1StudyConfigParameterSpecCategoricalValueSpecr   r   Tr&   8GoogleCloudMlV1StudyConfigParameterSpecDiscreteValueSpecr,   6GoogleCloudMlV1StudyConfigParameterSpecDoubleValueSpecrA   7GoogleCloudMlV1StudyConfigParameterSpecIntegerValueSpecrB   rC   IGoogleCloudMlV1StudyConfigParameterSpecMatchingParentCategoricalValueSpecrD   FGoogleCloudMlV1StudyConfigParameterSpecMatchingParentDiscreteValueSpecrE   AGoogleCloudMlV1StudyConfigParameterSpecMatchingParentIntValueSpecrF   rG   rH   r   N)r   r   r   r   r   r   rX   r  rV   r   categoricalValueSpecchildParameterSpecsdiscreteValueSpecdoubleValueSpecintegerValueSpecr   	parameterparentCategoricalValuesparentDiscreteValuesparentIntValuesrZ   r   r[   r!   r   r"   r#   rL  rL  t	  s   @ &INN ( #//0mopq!../XZ[fjk,,-gijk**+cefg/++,eghi##A&)%223~  AB  C"//0xz{|**+npqr/!!"<bA)			2B	7$r"   rL  c                   :    \ rS rSrSr\R                  " SSS9rSrg)rX  i	  zA GoogleCloudMlV1StudyConfigParameterSpecCategoricalValueSpec object.

Fields:
  values: Must be specified if type is `CATEGORICAL`. The list of possible
    categories.
r   Tr&   r   N	r   r   r   r   r   r   r   valuesr!   r   r"   r#   rX  rX  	         T2&r"   rX  c                   :    \ rS rSrSr\R                  " SSS9rSrg)rY  i	  a\  A GoogleCloudMlV1StudyConfigParameterSpecDiscreteValueSpec object.

Fields:
  values: Must be specified if type is `DISCRETE`. A list of feasible
    points. The list should be in strictly increasing order. For instance,
    this parameter might have possible settings of 1.5, 2.5, and 4.0. This
    list should not contain more than 1,000 values.
r   Tr&   r   N	r   r   r   r   r   r   ry   rj  r!   r   r"   r#   rY  rY  	  s     D1&r"   rY  c                   `    \ rS rSrSr\R                  " S5      r\R                  " S5      rSr	g)rZ  i	  zA GoogleCloudMlV1StudyConfigParameterSpecDoubleValueSpec object.

Fields:
  maxValue: Must be specified if type is `DOUBLE`. Maximum value of the
    parameter.
  minValue: Must be specified if type is `DOUBLE`. Minimum value of the
    parameter.
r   r   r   N)
r   r   r   r   r   r   ry   r  r  r!   r   r"   r#   rZ  rZ  	  s)     !!!$(!!!$(r"   rZ  c                   `    \ rS rSrSr\R                  " S5      r\R                  " S5      rSr	g)r[  i	  zA GoogleCloudMlV1StudyConfigParameterSpecIntegerValueSpec object.

Fields:
  maxValue: Must be specified if type is `INTEGER`. Maximum value of the
    parameter.
  minValue: Must be specified if type is `INTEGER`. Minimum value of the
    parameter.
r   r   r   N)
r   r   r   r   r   r   r7   r  r  r!   r   r"   r#   r[  r[  	  s)     ##A&(##A&(r"   r[  c                   :    \ rS rSrSr\R                  " SSS9rSrg)r\  i	  zRepresents the spec to match categorical values from parent parameter.

Fields:
  values: Matches values of the parent parameter with type 'CATEGORICAL'.
    All values must exist in `categorical_value_spec` of parent parameter.
r   Tr&   r   Nri  r   r"   r#   r\  r\  	  rk  r"   r\  c                   :    \ rS rSrSr\R                  " SSS9rSrg)r]  i
  zRepresents the spec to match discrete values from parent parameter.

Fields:
  values: Matches values of the parent parameter with type 'DISCRETE'. All
    values must exist in `discrete_value_spec` of parent parameter.
r   Tr&   r   Nrm  r   r"   r#   r]  r]  
  s     D1&r"   r]  c                   :    \ rS rSrSr\R                  " SSS9rSrg)r^  i
  zRepresents the spec to match integer values from parent parameter.

Fields:
  values: Matches values of the parent parameter with type 'INTEGER'. All
    values must lie in `integer_value_spec` of parent parameter.
r   Tr&   r   N)	r   r   r   r   r   r   r7   rj  r!   r   r"   r#   r^  r^  
  s     !!!d3&r"   r^  c                       \ rS rSrSr\R                  " S5      r\R                  " S5      r\R                  " S5      r	\R                  " S\R                  R                  S9rSrg	)
$GoogleCloudMlV1SuggestTrialsMetadatai
  aP  Metadata field of a google.longrunning.Operation associated with a
SuggestTrialsRequest.

Fields:
  clientId: The identifier of the client that is requesting the suggestion.
  createTime: The time operation was submitted.
  study: The name of the study that the trial belongs to.
  suggestionCount: The number of suggestions requested.
r   r   r,   rA   r5   r   N)r   r   r   r   r   r   r   clientIdr   r   r7   r8   r9   suggestionCountr!   r   r"   r#   rt  rt  
  sW     ""1%($$Q'*



"%**1i6G6G6M6MN/r"   rt  c                       \ rS rSrSr\R                  " S5      r\R                  " S\R                  R                  S9rSrg)#GoogleCloudMlV1SuggestTrialsRequesti/
  a  The request message for the SuggestTrial service method.

Fields:
  clientId: Required. The identifier of the client that is requesting the
    suggestion. If multiple SuggestTrialsRequests have the same `client_id`,
    the service will return the identical suggested trial if the trial is
    pending, and provide a new trial if the last suggested trial was
    completed.
  suggestionCount: Required. The number of suggestions requested.
r   r   r5   r   N)r   r   r   r   r   r   r   ru  r7   r8   r9   rv  r!   r   r"   r#   rx  rx  /
  s7    	 ""1%(**1i6G6G6M6MN/r"   rx  c                       \ rS rSrSr " S S\R                  5      r\R                  " S5      r	\R                  " S5      r
\R                  " SS5      r\R                  " SS	S
S9rSrg)$GoogleCloudMlV1SuggestTrialsResponsei?
  a  This message will be placed in the response field of a completed
google.longrunning.Operation associated with a SuggestTrials request.

Enums:
  StudyStateValueValuesEnum: The state of the study.

Fields:
  endTime: The time at which operation processing completed.
  startTime: The time at which the operation was started.
  studyState: The state of the study.
  trials: A list of trials.
c                   (    \ rS rSrSrSrSrSrSrSr	g)	>GoogleCloudMlV1SuggestTrialsResponse.StudyStateValueValuesEnumiM
  a'  The state of the study.

Values:
  STATE_UNSPECIFIED: The study state is unspecified.
  ACTIVE: The study is active.
  INACTIVE: The study is stopped due to an internal error.
  COMPLETED: The study is done when the service exhausts the parameter
    search space or max_trial_count is reached.
r   r   r   r,   r   Nr?  r   r"   r#   StudyStateValueValuesEnumr|  M
  rC  r"   r}  r   r   r,   r|  rA   Tr&   r   N)r   r   r   r   r   r   rX   r}  r   r   r   rZ   
studyStater   r~  r!   r   r"   r#   rz  rz  ?
  sa    )..  !!!$'##A&)""#>B*!!"8!dK&r"   rz  c                      \ rS rSrSr " S S\R                  5      r\R                  " SSS9r	\R                  " S5      r\R                  " S	S
5      r\R                  " SS5      r\R                  " S5      r\R                  " S5      r\R                  " SS5      r\R                  " S5      r\R                  " SS5      r\R                  " S5      r\R                  " SS5      r\R                  " S5      r\R                  " SSS9r\R                  " SS5      r\R                  " S5      r\R                  " S5      r\R                  " S5      r\R                  " S5      r\R                  " S5      r\R                  " S5      r\R@                  " SS5      r!\R                  " S S!5      r"\R                  " S"5      r#\R                  " S#5      r$\R                  " SS$5      r%\R                  " S%5      r&\R                  " S&5      r'S'r(g())r_  ib
  a,  Represents input parameters for a training job. When using the gcloud
command to submit your training job, you can specify the input parameters as
command-line arguments and/or in a YAML configuration file referenced from
the --config command-line argument. For details, see the guide to
[submitting a training job](/ai-platform/training/docs/training-jobs).

Enums:
  ScaleTierValueValuesEnum: Required. Specifies the machine types, the
    number of replicas for workers and parameter servers.

Fields:
  args: Optional. Command-line arguments passed to the training application
    when it starts. If your job uses a custom container, then the arguments
    are passed to the container's `ENTRYPOINT` command.
  enableWebAccess: Optional. Whether you want AI Platform Training to enable
    [interactive shell access](https://cloud.google.com/ai-
    platform/training/docs/monitor-debug-interactive-shell) to training
    containers. If set to `true`, you can access interactive shells at the
    URIs given by TrainingOutput.web_access_uris or
    HyperparameterOutput.web_access_uris (within TrainingOutput.trials).
  encryptionConfig: Optional. Options for using customer-managed encryption
    keys (CMEK) to protect resources created by a training job, instead of
    using Google's default encryption. If this is set, then all resources
    created by the training job will be encrypted with the customer-managed
    encryption key that you specify. [Learn how and when to use CMEK with AI
    Platform Training](/ai-platform/training/docs/cmek).
  evaluatorConfig: Optional. The configuration for evaluators. You should
    only set `evaluatorConfig.acceleratorConfig` if `evaluatorType` is set
    to a Compute Engine machine type. [Learn about restrictions on
    accelerator configurations for training.](/ai-
    platform/training/docs/using-gpus#compute-engine-machine-types-with-gpu)
    Set `evaluatorConfig.imageUri` only if you build a custom image for your
    evaluator. If `evaluatorConfig.imageUri` has not been set, AI Platform
    uses the value of `masterConfig.imageUri`. Learn more about [configuring
    custom containers](/ai-platform/training/docs/distributed-training-
    containers).
  evaluatorCount: Optional. The number of evaluator replicas to use for the
    training job. Each replica in the cluster will be of the type specified
    in `evaluator_type`. This value can only be used when `scale_tier` is
    set to `CUSTOM`. If you set this value, you must also set
    `evaluator_type`. The default value is zero.
  evaluatorType: Optional. Specifies the type of virtual machine to use for
    your training job's evaluator nodes. The supported values are the same
    as those described in the entry for `masterType`. This value must be
    consistent with the category of machine type that `masterType` uses. In
    other words, both must be Compute Engine machine types or both must be
    legacy machine types. This value must be present when `scaleTier` is set
    to `CUSTOM` and `evaluatorCount` is greater than zero.
  hyperparameters: Optional. The set of Hyperparameters to tune.
  jobDir: Optional. A Google Cloud Storage path in which to store training
    outputs and other data needed for training. This path is passed to your
    TensorFlow program as the '--job-dir' command-line argument. The benefit
    of specifying this field is that Cloud ML validates the path for use in
    training.
  masterConfig: Optional. The configuration for your master worker. You
    should only set `masterConfig.acceleratorConfig` if `masterType` is set
    to a Compute Engine machine type. Learn about [restrictions on
    accelerator configurations for training.](/ai-
    platform/training/docs/using-gpus#compute-engine-machine-types-with-gpu)
    Set `masterConfig.imageUri` only if you build a custom image. Only one
    of `masterConfig.imageUri` and `runtimeVersion` should be set. Learn
    more about [configuring custom containers](/ai-
    platform/training/docs/distributed-training-containers).
  masterType: Optional. Specifies the type of virtual machine to use for
    your training job's master worker. You must specify this field when
    `scaleTier` is set to `CUSTOM`. You can use certain Compute Engine
    machine types directly in this field. See the [list of compatible
    Compute Engine machine types](/ai-platform/training/docs/machine-
    types#compute-engine-machine-types). Alternatively, you can use the
    certain legacy machine types in this field. See the [list of legacy
    machine types](/ai-platform/training/docs/machine-types#legacy-machine-
    types). Finally, if you want to use a TPU for training, specify
    `cloud_tpu` in this field. Learn more about the [special configuration
    options for training with TPUs](/ai-platform/training/docs/using-
    tpus#configuring_a_custom_tpu_machine).
  nasJobSpec: Optional. The spec of a Neural Architecture Search (NAS) job.
  network: Optional. The full name of the [Compute Engine
    network](/vpc/docs/vpc) to which the Job is peered. For example,
    `projects/12345/global/networks/myVPC`. The format of this field is
    `projects/{project}/global/networks/{network}`, where {project} is a
    project number (like `12345`) and {network} is network name. Private
    services access must already be configured for the network. If left
    unspecified, the Job is not peered with any network. [Learn about using
    VPC Network Peering.](/ai-platform/training/docs/vpc-peering).
  packageUris: Required. The Google Cloud Storage location of the packages
    with the training program and any additional dependencies. The maximum
    number of package URIs is 100.
  parameterServerConfig: Optional. The configuration for parameter servers.
    You should only set `parameterServerConfig.acceleratorConfig` if
    `parameterServerType` is set to a Compute Engine machine type. [Learn
    about restrictions on accelerator configurations for training.](/ai-
    platform/training/docs/using-gpus#compute-engine-machine-types-with-gpu)
    Set `parameterServerConfig.imageUri` only if you build a custom image
    for your parameter server. If `parameterServerConfig.imageUri` has not
    been set, AI Platform uses the value of `masterConfig.imageUri`. Learn
    more about [configuring custom containers](/ai-
    platform/training/docs/distributed-training-containers).
  parameterServerCount: Optional. The number of parameter server replicas to
    use for the training job. Each replica in the cluster will be of the
    type specified in `parameter_server_type`. This value can only be used
    when `scale_tier` is set to `CUSTOM`. If you set this value, you must
    also set `parameter_server_type`. The default value is zero.
  parameterServerType: Optional. Specifies the type of virtual machine to
    use for your training job's parameter server. The supported values are
    the same as those described in the entry for `master_type`. This value
    must be consistent with the category of machine type that `masterType`
    uses. In other words, both must be Compute Engine machine types or both
    must be legacy machine types. This value must be present when
    `scaleTier` is set to `CUSTOM` and `parameter_server_count` is greater
    than zero.
  pythonModule: Required. The Python module name to run after installing the
    packages.
  pythonVersion: Optional. The version of Python used in training. You must
    either specify this field or specify `masterConfig.imageUri`. The
    following Python versions are available: * Python '3.7' is available
    when `runtime_version` is set to '1.15' or later. * Python '3.5' is
    available when `runtime_version` is set to a version from '1.4' to
    '1.14'. * Python '2.7' is available when `runtime_version` is set to
    '1.15' or earlier. Read more about the Python versions available for
    [each runtime version](/ml-engine/docs/runtime-version-list).
  region: Required. The region to run the training job in. See the
    [available regions](/ai-platform/training/docs/regions) for AI Platform
    Training.
  runtimeVersion: Optional. The AI Platform runtime version to use for
    training. You must either specify this field or specify
    `masterConfig.imageUri`. For more information, see the [runtime version
    list](/ai-platform/training/docs/runtime-version-list) and learn [how to
    manage runtime versions](/ai-platform/training/docs/versioning).
  scaleTier: Required. Specifies the machine types, the number of replicas
    for workers and parameter servers.
  scheduling: Optional. Scheduling options for a training job.
  serviceAccount: Optional. The email address of a service account to use
    when running the training appplication. You must have the
    `iam.serviceAccounts.actAs` permission for the specified service
    account. In addition, the AI Platform Training Google-managed service
    account must have the `roles/iam.serviceAccountAdmin` role for the
    specified service account. [Learn more about configuring a service
    account.](/ai-platform/training/docs/custom-service-account) If not
    specified, the AI Platform Training Google-managed service account is
    used by default.
  useChiefInTfConfig: Optional. Use `chief` instead of `master` in the
    `TF_CONFIG` environment variable when training with a custom container.
    Defaults to `false`. [Learn more about this field.](/ai-
    platform/training/docs/distributed-training-details#chief-versus-master)
    This field has no effect for training jobs that don't use a custom
    container.
  workerConfig: Optional. The configuration for workers. You should only set
    `workerConfig.acceleratorConfig` if `workerType` is set to a Compute
    Engine machine type. [Learn about restrictions on accelerator
    configurations for training.](/ai-platform/training/docs/using-
    gpus#compute-engine-machine-types-with-gpu) Set `workerConfig.imageUri`
    only if you build a custom image for your worker. If
    `workerConfig.imageUri` has not been set, AI Platform uses the value of
    `masterConfig.imageUri`. Learn more about [configuring custom
    containers](/ai-platform/training/docs/distributed-training-containers).
  workerCount: Optional. The number of worker replicas to use for the
    training job. Each replica in the cluster will be of the type specified
    in `worker_type`. This value can only be used when `scale_tier` is set
    to `CUSTOM`. If you set this value, you must also set `worker_type`. The
    default value is zero.
  workerType: Optional. Specifies the type of virtual machine to use for
    your training job's worker nodes. The supported values are the same as
    those described in the entry for `masterType`. This value must be
    consistent with the category of machine type that `masterType` uses. In
    other words, both must be Compute Engine machine types or both must be
    legacy machine types. If you use `cloud_tpu` for this value, see special
    instructions for [configuring a custom TPU machine](/ml-
    engine/docs/tensorflow/using-tpus#configuring_a_custom_tpu_machine).
    This value must be present when `scaleTier` is set to `CUSTOM` and
    `workerCount` is greater than zero.
c                   0    \ rS rSrSrSrSrSrSrSr	Sr
S	rg
)5GoogleCloudMlV1TrainingInput.ScaleTierValueValuesEnumi  a  Required. Specifies the machine types, the number of replicas for
workers and parameter servers.

Values:
  BASIC: A single worker instance. This tier is suitable for learning how
    to use Cloud ML, and for experimenting with new models using small
    datasets.
  STANDARD_1: Many workers and a few parameter servers.
  PREMIUM_1: A large number of workers with many parameter servers.
  BASIC_GPU: A single worker instance [with a GPU](/ai-
    platform/training/docs/using-gpus).
  BASIC_TPU: A single worker instance with a [Cloud TPU](/ml-
    engine/docs/tensorflow/using-tpus).
  CUSTOM: The CUSTOM tier is not a set tier, but rather enables you to use
    your own cluster specification. When you use this tier, set values to
    configure your processing cluster according to these guidelines: * You
    _must_ set `TrainingInput.masterType` to specify the type of machine
    to use for your master node. This is the only required setting. * You
    _may_ set `TrainingInput.workerCount` to specify the number of workers
    to use. If you specify one or more workers, you _must_ also set
    `TrainingInput.workerType` to specify the type of machine to use for
    your worker nodes. * You _may_ set
    `TrainingInput.parameterServerCount` to specify the number of
    parameter servers to use. If you specify one or more parameter
    servers, you _must_ also set `TrainingInput.parameterServerType` to
    specify the type of machine to use for your parameter servers. Note
    that all of your workers must use the same machine type, which can be
    different from your parameter server type and master type. Your
    parameter servers must likewise use the same machine type, which can
    be different from your worker type and master type.
r   r   r   r,   rA   rB   r   N)r   r   r   r   r   BASIC
STANDARD_1	PREMIUM_1	BASIC_GPU	BASIC_TPUCUSTOMr!   r   r"   r#   ScaleTierValueValuesEnumr    s'    > EJIIIFr"   r  r   Tr&   r   r   r,   r  rA   rB   rC   r4  rD   rE   rF   rG   r  rH   r   r   r   r   r   r
   r            r)                    r   N))r   r   r   r   r   r   rX   r  r   r   rr   enableWebAccessr   encryptionConfigevaluatorConfigr7   evaluatorCountevaluatorTyper+  jobDirmasterConfig
masterType
nasJobSpecnetworkpackageUrisparameterServerConfigparameterServerCountparameterServerTypepythonModuler   r   r   rZ   	scaleTier
schedulingr  useChiefInTfConfigworkerConfigworkerCountr   r!   r   r"   r#   r_  r_  b
  s   jX% %N 
		q4	0$**1-/++,MqQ**+I1M/))!,.''*-**+NPQR/  #&''(FJ,$$R(*%%&>C*!!"%'%%b48+#001OQST"//3!--b1&&r*,''+-  $&((,.!!"<bA)%%&A2F*((,. --b1''(FK,&&r*+$$R(*r"   r_  c                      \ rS rSrSr\R                  " S5       " S S\R                  5      5       r	\R                  " SS5      r\R                  " S5      r\R                  " S	5      r\R                   " S
5      r\R$                  " S5      r\R$                  " S5      r\R                  " SS5      r\R                  " SSSS9r\R                  " SS5      rSrg)r`  iS  a"  Represents results of a training job. Output only.

Messages:
  WebAccessUrisValue: Output only. URIs for accessing [interactive
    shells](https://cloud.google.com/ai-platform/training/docs/monitor-
    debug-interactive-shell) (one URI for each training node). Only
    available if training_input.enable_web_access is `true`. The keys are
    names of each node in the training job; for example, `master-replica-0`
    for the master node, `worker-replica-0` for the first worker, and `ps-
    replica-0` for the first parameter server. The values are the URIs for
    each node's interactive shell.

Fields:
  builtInAlgorithmOutput: Details related to built-in algorithms jobs. Only
    set for built-in algorithms jobs.
  completedTrialCount: The number of hyperparameter tuning trials that
    completed successfully. Only set for hyperparameter tuning jobs.
  consumedMLUnits: The amount of ML units consumed by the job.
  hyperparameterMetricTag: The TensorFlow summary tag name used for
    optimizing hyperparameter tuning trials. See [`HyperparameterSpec.hyperp
    arameterMetricTag`](#HyperparameterSpec.FIELDS.hyperparameter_metric_tag
    ) for more information. Only set for hyperparameter tuning jobs.
  isBuiltInAlgorithmJob: Whether this job is a built-in Algorithm job.
  isHyperparameterTuningJob: Whether this job is a hyperparameter tuning
    job.
  nasJobOutput: The output of a Neural Architecture Search (NAS) job.
  trials: Results for individual Hyperparameter trials. Only set for
    hyperparameter tuning jobs.
  webAccessUris: Output only. URIs for accessing [interactive
    shells](https://cloud.google.com/ai-platform/training/docs/monitor-
    debug-interactive-shell) (one URI for each training node). Only
    available if training_input.enable_web_access is `true`. The keys are
    names of each node in the training job; for example, `master-replica-0`
    for the master node, `worker-replica-0` for the first worker, and `ps-
    replica-0` for the first parameter server. The values are the URIs for
    each node's interactive shell.
r   c                   f    \ rS rSrSr " S S\R                  5      r\R                  " SSSS9r	Sr
g	)
0GoogleCloudMlV1TrainingOutput.WebAccessUrisValueiz  a  Output only. URIs for accessing [interactive
shells](https://cloud.google.com/ai-platform/training/docs/monitor-debug-
interactive-shell) (one URI for each training node). Only available if
training_input.enable_web_access is `true`. The keys are names of each
node in the training job; for example, `master-replica-0` for the master
node, `worker-replica-0` for the first worker, and `ps-replica-0` for the
first parameter server. The values are the URIs for each node's
interactive shell.

Messages:
  AdditionalProperty: An additional property for a WebAccessUrisValue
    object.

Fields:
  additionalProperties: Additional properties of type WebAccessUrisValue
c                   `    \ rS rSrSr\R                  " S5      r\R                  " S5      rSr	g)CGoogleCloudMlV1TrainingOutput.WebAccessUrisValue.AdditionalPropertyi  r$  r   r   r   Nr  r   r"   r#   r$   r    r  r"   r$   r   Tr&   r   Nr(   r   r"   r#   r%  r  z  r&  r"   r%  r}   r   r   r,   rA   rB   rC   r  rD   r	  rE   Tr&   rF   r   N)r   r   r   r   r   r   r-   r   r)   r%  r   r)  r7   completedTrialCountry   consumedMLUnitsr   rG  rr   isBuiltInAlgorithmJobisHyperparameterTuningJobnasJobOutputr~  r/  r!   r   r"   r#   r`  r`  S  s    $L !!"89Z9,, Z :Z> %112Y[\]!..q1((+/%11!4#003'44Q7''(EqI,!!"GUYZ&(()=qA-r"   r`  c                       \ rS rSrSrSrg)r   i  zAttributes credit by computing the Shapley value taking advantage of the
model's tree ensemble structure. Refer to this paper for more details:
https://arxiv.org/abs/1705.07874 This attribution method is supported for
XGBoost models.
r   Nr   r   r"   r#   r   r     r%  r"   r   c                      \ rS rSrSr " S S\R                  5      r\R                  " S5      r	\R                  " S5      r
\R                  " SS5      r\R                  " S	5      r\R                  " SS
SS9r\R                  " S5      r\R                  " SSSS9r\R                  " S5      r\R$                  " SS5      r\R(                  " S5      rSrg)r|  i  a  A message representing a trial.

Enums:
  StateValueValuesEnum: The detailed state of a trial.

Fields:
  clientId: Output only. The identifier of the client that originally
    requested this trial.
  endTime: Output only. Time at which the trial's status changed to
    COMPLETED.
  finalMeasurement: The final measurement containing the objective value.
  infeasibleReason: Output only. A human readable string describing why the
    trial is infeasible. This should only be set if trial_infeasible is
    true.
  measurements: A list of measurements that are strictly lexicographically
    ordered by their induced tuples (steps, elapsed_time). These are used
    for early stopping computations.
  name: Output only. Name of the trial assigned by the service.
  parameters: The parameters of the trial.
  startTime: Output only. Time at which the trial was started.
  state: The detailed state of a trial.
  trialInfeasible: Output only. If true, the parameters in this trial are
    not attempted again.
c                   ,    \ rS rSrSrSrSrSrSrSr	Sr
g	)
)GoogleCloudMlV1Trial.StateValueValuesEnumi  a  The detailed state of a trial.

Values:
  STATE_UNSPECIFIED: The trial state is unspecified.
  REQUESTED: Indicates that a specific trial has been requested, but it
    has not yet been suggested by the service.
  ACTIVE: Indicates that the trial has been suggested.
  COMPLETED: Indicates that the trial is done, and either has a
    final_measurement set, or is marked as trial_infeasible.
  STOPPING: Indicates that the trial should stop according to the service.
r   r   r   r,   rA   r   N)r   r   r   r   r   r  	REQUESTEDr@  rB  STOPPINGr!   r   r"   r#   r  r    s#    
 IFIHr"   r  r   r   r_   r,   rA   rB   Tr&   rC   GoogleCloudMlV1TrialParameterrD   rE   rF   rG   r   N)r   r   r   r   r   r   rX   r  r   ru  r   r   r   r   measurementsr   rN  r   rZ   r-  rr   r   r!   r   r"   r#   r|  r|    s    2Y^^ $ ""1%(!!!$'++,H!L**1-''(DaRVW,			q	!$%%&EqSWX*##A&)


4a
8%**2./r"   r|  c                       \ rS rSrSr\R                  " S5      r\R                  " S5      r	\R                  " S5      r\R                  " S5      rSrg)	r  i  ac  A message representing a parameter to be tuned. Contains the name of the
parameter and the suggested value to use for this trial.

Fields:
  floatValue: Must be set if ParameterType is DOUBLE or DISCRETE.
  intValue: Must be set if ParameterType is INTEGER
  parameter: The name of the parameter.
  stringValue: Must be set if ParameterTypeis CATEGORICAL
r   r   r,   rA   r   N)r   r   r   r   r   r   ry   
floatValuer7   intValuer   rd  stringValuer!   r   r"   r#   r  r    sI     ##A&*##A&(##A&)%%a(+r"   r  c                      \ rS rSrSr " S S\R                  5      r " S S\R                  5      r\	R                  " S5       " S S	\R                  5      5       r\R                  " S
S5      r\R                  " SS5      r\R                  " SS5      r\R"                  " S5      r\R"                  " S5      r\R"                  " S5      r\R"                  " S5      r\R,                  " S5      r\R                  " SS5      r\R2                  " SS5      r\R"                  " S5      r\R8                  " S5      r\R                  " S	S5      r\R"                  " S5      r\R"                  " S5      r \R"                  " S5      r!\R"                  " S5      r"\R                  " SS 5      r#\R"                  " S!5      r$\R"                  " S"5      r%\R"                  " S#S$S%9r&\R"                  " S&5      r'\R"                  " S'5      r(\R                  " S(S)5      r)\R                  " S*S+5      r*\R"                  " S,5      r+\R"                  " S-5      r,\R2                  " SS.5      r-S/r.g0)1r  i  a.  Represents a version of the model. Each version is a trained model
deployed in the cloud, ready to handle prediction requests. A model can have
multiple versions. You can get information about all of the versions of a
given model by calling projects.models.versions.list.

Enums:
  FrameworkValueValuesEnum: Optional. The machine learning framework AI
    Platform uses to train this version of the model. Valid values are
    `TENSORFLOW`, `SCIKIT_LEARN`, `XGBOOST`. If you do not specify a
    framework, AI Platform will analyze files in the deployment_uri to
    determine a framework. If you choose `SCIKIT_LEARN` or `XGBOOST`, you
    must also set the runtime version of the model to 1.4 or greater. Do
    **not** specify a framework if you're deploying a [custom prediction
    routine](/ai-platform/prediction/docs/custom-prediction-routines) or if
    you're using a [custom container](/ai-platform/prediction/docs/use-
    custom-container).
  StateValueValuesEnum: Output only. The state of a version.

Messages:
  LabelsValue: Optional. One or more labels that you can add, to organize
    your model versions. Each label is a key-value pair, where both the key
    and the value are arbitrary strings that you supply. For more
    information, see the documentation on using labels. Note that this field
    is not updatable for mls1* models.

Fields:
  acceleratorConfig: Optional. Accelerator config for using GPUs for online
    prediction (beta). Only specify this field if you have specified a
    Compute Engine (N1) machine type in the `machineType` field. Learn more
    about [using GPUs for online prediction](/ml-engine/docs/machine-types-
    online-prediction#gpus).
  autoScaling: Automatically scale the number of nodes used to serve the
    model in response to increases and decreases in traffic. Care should be
    taken to ramp up traffic according to the model's ability to scale or
    you will start seeing increases in latency and 429 response codes.
  container: Optional. Specifies a custom container to use for serving
    predictions. If you specify this field, then `machineType` is required.
    If you specify this field, then `deploymentUri` is optional. If you
    specify this field, then you must not specify `runtimeVersion`,
    `packageUris`, `framework`, `pythonVersion`, or `predictionClass`.
  createTime: Output only. The time the version was created.
  deploymentUri: The Cloud Storage URI of a directory containing trained
    model artifacts to be used to create the model version. See the [guide
    to deploying models](/ai-platform/prediction/docs/deploying-models) for
    more information. The total number of files under this directory must
    not exceed 1000. During projects.models.versions.create, AI Platform
    Prediction copies all files from the specified directory to a location
    managed by the service. From then on, AI Platform Prediction uses these
    copies of the model artifacts to serve predictions, not the original
    files in Cloud Storage, so this location is useful only as a historical
    record. If you specify container, then this field is optional.
    Otherwise, it is required. Learn [how to use this field with a custom
    container](/ai-platform/prediction/docs/custom-container-
    requirements#artifacts).
  description: Optional. The description specified for the version when it
    was created.
  errorMessage: Output only. The details of a failure or a cancellation.
  etag: `etag` is used for optimistic concurrency control as a way to help
    prevent simultaneous updates of a model from overwriting each other. It
    is strongly suggested that systems make use of the `etag` in the read-
    modify-write cycle to perform model updates in order to avoid race
    conditions: An `etag` is returned in the response to `GetVersion`, and
    systems are expected to put that etag in the request to `UpdateVersion`
    to ensure that their change will be applied to the model as intended.
  explanationConfig: Optional. Configures explainability features on the
    model's version. Some explanation features require additional metadata
    to be loaded as part of the model payload.
  framework: Optional. The machine learning framework AI Platform uses to
    train this version of the model. Valid values are `TENSORFLOW`,
    `SCIKIT_LEARN`, `XGBOOST`. If you do not specify a framework, AI
    Platform will analyze files in the deployment_uri to determine a
    framework. If you choose `SCIKIT_LEARN` or `XGBOOST`, you must also set
    the runtime version of the model to 1.4 or greater. Do **not** specify a
    framework if you're deploying a [custom prediction routine](/ai-
    platform/prediction/docs/custom-prediction-routines) or if you're using
    a [custom container](/ai-platform/prediction/docs/use-custom-container).
  imageUri: Optional. The docker image to run for custom serving container.
    This image must be in Google Container Registry.
  isDefault: Output only. If true, this version will be used to handle
    prediction requests that do not specify a version. You can change the
    default version by calling projects.methods.versions.setDefault.
  labels: Optional. One or more labels that you can add, to organize your
    model versions. Each label is a key-value pair, where both the key and
    the value are arbitrary strings that you supply. For more information,
    see the documentation on using labels. Note that this field is not
    updatable for mls1* models.
  lastMigrationModelId: Output only. The [AI Platform (Unified)
    `Model`](https://cloud.google.com/ai-platform-
    unified/docs/reference/rest/v1beta1/projects.locations.models) ID for
    the last [model migration](https://cloud.google.com/ai-platform-
    unified/docs/start/migrating-to-ai-platform-unified).
  lastMigrationTime: Output only. The last time this version was
    successfully [migrated to AI Platform
    (Unified)](https://cloud.google.com/ai-platform-
    unified/docs/start/migrating-to-ai-platform-unified).
  lastUseTime: Output only. The time the version was last used for
    prediction.
  machineType: Optional. The type of machine on which to serve the model.
    Currently only applies to online prediction service. To learn about
    valid values for this field, read [Choosing a machine type for online
    prediction](/ai-platform/prediction/docs/machine-types-online-
    prediction). If this field is not specified and you are using a
    [regional endpoint](/ai-platform/prediction/docs/regional-endpoints),
    then the machine type defaults to `n1-standard-2`. If this field is not
    specified and you are using the global endpoint (`ml.googleapis.com`),
    then the machine type defaults to `mls1-c1-m2`.
  manualScaling: Manually select the number of nodes to use for serving the
    model. You should generally use `auto_scaling` with an appropriate
    `min_nodes` instead, but this option is available if you want more
    predictable billing. Beware that latency and error rates will increase
    if the traffic exceeds that capability of the system to serve it based
    on the selected number of nodes.
  modelClass: A string attribute.
  name: Required. The name specified for the version when it was created.
    The version name must be unique within the model it is created in.
  packageUris: Optional. Cloud Storage paths (`gs://...`) of packages for
    [custom prediction routines](/ml-engine/docs/tensorflow/custom-
    prediction-routines) or [scikit-learn pipelines with custom code](/ml-
    engine/docs/scikit/exporting-for-prediction#custom-pipeline-code). For a
    custom prediction routine, one of these packages must contain your
    Predictor class (see
    [`predictionClass`](#Version.FIELDS.prediction_class)). Additionally,
    include any dependencies used by your Predictor or scikit-learn pipeline
    uses that are not already included in your selected [runtime
    version](/ml-engine/docs/tensorflow/runtime-version-list). If you
    specify this field, you must also set
    [`runtimeVersion`](#Version.FIELDS.runtime_version) to 1.4 or greater.
  predictionClass: Optional. The fully qualified name
    (module_name.class_name) of a class that implements the Predictor
    interface described in this reference field. The module containing this
    class should be included in a package provided to the [`packageUris`
    field](#Version.FIELDS.package_uris). Specify this field if and only if
    you are deploying a [custom prediction routine (beta)](/ml-
    engine/docs/tensorflow/custom-prediction-routines). If you specify this
    field, you must set [`runtimeVersion`](#Version.FIELDS.runtime_version)
    to 1.4 or greater and you must set `machineType` to a [legacy (MLS1)
    machine type](/ml-engine/docs/machine-types-online-prediction). The
    following code sample provides the Predictor interface: class
    Predictor(object): " " "Interface for constructing custom predictors." "
    " def predict(self, instances, **kwargs): " " "Performs custom
    prediction. Instances are the decoded values from the request. They have
    already been deserialized from JSON. Args: instances: A list of
    prediction input instances. **kwargs: A dictionary of keyword args
    provided as additional fields on the predict request body. Returns: A
    list of outputs containing the prediction results. This list must be
    JSON serializable. " " " raise NotImplementedError() @classmethod def
    from_path(cls, model_dir): " " "Creates an instance of Predictor using
    the given path. Loading of the predictor should be done in this method.
    Args: model_dir: The local directory that contains the exported model
    file along with any additional files uploaded when creating the version
    resource. Returns: An instance implementing this Predictor class. " " "
    raise NotImplementedError() Learn more about [the Predictor interface
    and custom prediction routines](/ml-engine/docs/tensorflow/custom-
    prediction-routines).
  pythonVersion: Required. The version of Python used in prediction. The
    following Python versions are available: * Python '3.7' is available
    when `runtime_version` is set to '1.15' or later. * Python '3.5' is
    available when `runtime_version` is set to a version from '1.4' to
    '1.14'. * Python '2.7' is available when `runtime_version` is set to
    '1.15' or earlier. Read more about the Python versions available for
    [each runtime version](/ml-engine/docs/runtime-version-list).
  requestLoggingConfig: Optional. *Only* specify this field in a
    projects.models.versions.patch request. Specifying it in a
    projects.models.versions.create request has no effect. Configures the
    request-response pair logging on predictions from this Version.
  routes: Optional. Specifies paths on a custom container's HTTP server
    where AI Platform Prediction sends certain requests. If you specify this
    field, then you must also specify the `container` field. If you specify
    the `container` field and do not specify this field, it defaults to the
    following: ```json { "predict":
    "/v1/models/MODEL/versions/VERSION:predict", "health":
    "/v1/models/MODEL/versions/VERSION" } ``` See RouteMap for more details
    about these default values.
  runtimeVersion: Required. The AI Platform runtime version to use for this
    deployment. For more information, see the [runtime version list](/ml-
    engine/docs/runtime-version-list) and [how to manage runtime
    versions](/ml-engine/docs/versioning).
  serviceAccount: Optional. Specifies the service account for resource
    access control. If you specify this field, then you must also specify
    either the `containerSpec` or the `predictionClass` field. Learn more
    about [using a custom service account](/ai-
    platform/prediction/docs/custom-service-account).
  state: Output only. The state of a version.
c                   (    \ rS rSrSrSrSrSrSrSr	g)	/GoogleCloudMlV1Version.FrameworkValueValuesEnumi  a3  Optional. The machine learning framework AI Platform uses to train
this version of the model. Valid values are `TENSORFLOW`, `SCIKIT_LEARN`,
`XGBOOST`. If you do not specify a framework, AI Platform will analyze
files in the deployment_uri to determine a framework. If you choose
`SCIKIT_LEARN` or `XGBOOST`, you must also set the runtime version of the
model to 1.4 or greater. Do **not** specify a framework if you're
deploying a [custom prediction routine](/ai-
platform/prediction/docs/custom-prediction-routines) or if you're using a
[custom container](/ai-platform/prediction/docs/use-custom-container).

Values:
  FRAMEWORK_UNSPECIFIED: Unspecified framework. Assigns a value based on
    the file suffix.
  TENSORFLOW: Tensorflow framework.
  SCIKIT_LEARN: Scikit-learn framework.
  XGBOOST: XGBoost framework.
r   r   r   r,   r   Nr   r   r"   r#   r   r    s    " JLGr"   r   c                   0    \ rS rSrSrSrSrSrSrSr	Sr
S	rg
)+GoogleCloudMlV1Version.StateValueValuesEnumi  a  Output only. The state of a version.

Values:
  UNKNOWN: The version state is unspecified.
  READY: The version is ready for prediction.
  CREATING: The version is being created. New UpdateVersion and
    DeleteVersion requests will fail if a version is in the CREATING
    state.
  FAILED: The version failed to be created, possibly cancelled.
    `error_message` should contain the details of the failure.
  DELETING: The version is being deleted. New UpdateVersion and
    DeleteVersion requests will fail if a version is in the DELETING
    state.
  UPDATING: The version is being updated. New UpdateVersion and
    DeleteVersion requests will fail if a version is in the UPDATING
    state.
r   r   r   r,   rA   rB   r   N)r   r   r   r   r   UNKNOWNREADYCREATINGr  DELETINGUPDATINGr!   r   r"   r#   r  r    s'    " GEHFHHr"   r  r   c                   f    \ rS rSrSr " S S\R                  5      r\R                  " SSSS9r	Sr
g	)
"GoogleCloudMlV1Version.LabelsValuei  a  Optional. One or more labels that you can add, to organize your model
versions. Each label is a key-value pair, where both the key and the value
are arbitrary strings that you supply. For more information, see the
documentation on using labels. Note that this field is not updatable for
mls1* models.

Messages:
  AdditionalProperty: An additional property for a LabelsValue object.

Fields:
  additionalProperties: Additional properties of type LabelsValue
c                   `    \ rS rSrSr\R                  " S5      r\R                  " S5      rSr	g)5GoogleCloudMlV1Version.LabelsValue.AdditionalPropertyi  r[  r   r   r   Nr  r   r"   r#   r$   r    r  r"   r$   r   Tr&   r   Nr(   r   r"   r#   r\  r    r  r"   r\  r<   r   rb   r   r   r,   rA   rB   rC   rD   rE   r   rF   rG   rH   r   r   r   r   r   r
   r  r   r  r  r  Tr&   r  r  r  r  r!  r  r  r     r   N)/r   r   r   r   r   r   rX   r   r  r   r-   r)   r\  r   r  autoScaling	containerr   r   deploymentUrir  ra  r/   rb  r   rZ   r~   r  rr   	isDefaultrg  lastMigrationModelIdlastMigrationTimelastUseTimemachineTypemanualScaling
modelClassr   r  predictionClassr   requestLoggingConfigroutesr   r  r-  r!   r   r"   r#   r  r    sB   wr .Y^^ 2 !!"89ZI%% Z :Z6  ,,-OQRS&&'CQG+$$%CQG)$$Q'*''*-%%a(+&&q),			a	 $,,-OQRS!!"<bA)""2&($$R()!!-4&"..r2++B/%%b)+%%b)+(()GL-$$R(*			r	"$%%b48+))"-/''+-"//0UWYZ!!";R@&((,.((,.


4b
9%r"   r  c                       \ rS rSrSr\R                  " SS5      r\R                  " S\R                  R                  S9r\R                  " SS5      rS	rg
)r   i  a2  Attributes credit by computing the XRAI taking advantage of the model's
fully differentiable structure. Refer to this paper for more details:
https://arxiv.org/abs/1906.02825 Currently only implemented for models with
natural image inputs.

Fields:
  blurBaselineConfig: Config for XRAI with blur baseline. When enabled, a
    linear path from the maximally blurred image to the input image is
    created. Using a blurred baseline instead of zero (black image) is
    motivated by the BlurIG approach explained here:
    https://arxiv.org/abs/2004.03383
  numIntegralSteps: Number of steps for approximating the path integral. A
    good value to start is 50 and gradually increase until the sum to diff
    property is met within the desired error range.
  smoothGradConfig: Config for SmoothGrad approximation of gradients. When
    enabled, the gradients are approximated by averaging the gradients from
    noisy samples in the vicinity of the inputs. Adding noise can help
    improve the computed gradients, see here for why:
    https://arxiv.org/pdf/1706.03825.pdf
rw   r   r   r5   rN  r,   r   NrO  r   r"   r#   r   r     sQ    * !--.QSTU++Ay7H7H7N7NO++,MqQr"   r   c                   `    \ rS rSrSr\R                  " SSSS9r\R                  " S5      r	Sr
g	)
GoogleIamV1AuditConfigi6  aw  Specifies the audit configuration for a service. The configuration
determines which permission types are logged, and what identities, if any,
are exempted from logging. An AuditConfig must have one or more
AuditLogConfigs. If there are AuditConfigs for both `allServices` and a
specific service, the union of the two AuditConfigs is used for that
service: the log_types specified in each AuditConfig are enabled, and the
exempted_members in each AuditLogConfig are exempted. Example Policy with
multiple AuditConfigs: { "audit_configs": [ { "service": "allServices",
"audit_log_configs": [ { "log_type": "DATA_READ", "exempted_members": [
"user:jose@example.com" ] }, { "log_type": "DATA_WRITE" }, { "log_type":
"ADMIN_READ" } ] }, { "service": "sampleservice.googleapis.com",
"audit_log_configs": [ { "log_type": "DATA_READ" }, { "log_type":
"DATA_WRITE", "exempted_members": [ "user:aliya@example.com" ] } ] } ] } For
sampleservice, this policy enables DATA_READ, DATA_WRITE and ADMIN_READ
logging. It also exempts `jose@example.com` from DATA_READ logging, and
`aliya@example.com` from DATA_WRITE logging.

Fields:
  auditLogConfigs: The configuration for logging of each type of permission.
  service: Specifies a service that will be enabled for audit logging. For
    example, `storage.googleapis.com`, `cloudsql.googleapis.com`.
    `allServices` is a special value that covers all services.
GoogleIamV1AuditLogConfigr   Tr&   r   r   N)r   r   r   r   r   r   r   auditLogConfigsr   servicer!   r   r"   r#   r  r  6  s/    0 **+FTXY/!!!$'r"   r  c                       \ rS rSrSr " S S\R                  5      r\R                  " SSS9r	\R                  " SS5      rS	rg
)r  iS  aR  Provides the configuration for logging a type of permissions. Example: {
"audit_log_configs": [ { "log_type": "DATA_READ", "exempted_members": [
"user:jose@example.com" ] }, { "log_type": "DATA_WRITE" } ] } This enables
'DATA_READ' and 'DATA_WRITE' logging, while exempting jose@example.com from
DATA_READ logging.

Enums:
  LogTypeValueValuesEnum: The log type that this config enables.

Fields:
  exemptedMembers: Specifies the identities that do not cause logging for
    this type of permission. Follows the same format of Binding.members.
  logType: The log type that this config enables.
c                   (    \ rS rSrSrSrSrSrSrSr	g)	0GoogleIamV1AuditLogConfig.LogTypeValueValuesEnumic  a  The log type that this config enables.

Values:
  LOG_TYPE_UNSPECIFIED: Default case. Should never be this.
  ADMIN_READ: Admin reads. Example: CloudIAM getIamPolicy
  DATA_WRITE: Data writes. Example: CloudSQL Users create
  DATA_READ: Data reads. Example: CloudSQL Users list
r   r   r   r,   r   N)
r   r   r   r   r   LOG_TYPE_UNSPECIFIED
ADMIN_READ
DATA_WRITE	DATA_READr!   r   r"   r#   LogTypeValueValuesEnumr  c  s     JJIr"   r  r   Tr&   r   r   N)r   r   r   r   r   r   rX   r  r   exemptedMembersrZ   logTyper!   r   r"   r#   r  r  S  s>    y~~  ))!d;/ 8!<'r"   r  c                       \ rS rSrSr\R                  " SS5      r\R                  " SSS9r	\R                  " S5      r
S	rg
)GoogleIamV1Bindingiu  at  Associates `members`, or principals, with a `role`.

Fields:
  condition: The condition that is associated with this binding. If the
    condition evaluates to `true`, then this binding applies to the current
    request. If the condition evaluates to `false`, then this binding does
    not apply to the current request. However, a different role binding
    might grant the same role to one or more of the principals in this
    binding. To learn which resources support conditions in their IAM
    policies, see the [IAM
    documentation](https://cloud.google.com/iam/help/conditions/resource-
    policies).
  members: Specifies the principals requesting access for a Google Cloud
    resource. `members` can have the following values: * `allUsers`: A
    special identifier that represents anyone who is on the internet; with
    or without a Google account. * `allAuthenticatedUsers`: A special
    identifier that represents anyone who is authenticated with a Google
    account or a service account. Does not include identities that come from
    external identity providers (IdPs) through identity federation. *
    `user:{emailid}`: An email address that represents a specific Google
    account. For example, `alice@example.com` . *
    `serviceAccount:{emailid}`: An email address that represents a Google
    service account. For example, `my-other-
    app@appspot.gserviceaccount.com`. *
    `serviceAccount:{projectid}.svc.id.goog[{namespace}/{kubernetes-sa}]`:
    An identifier for a [Kubernetes service
    account](https://cloud.google.com/kubernetes-engine/docs/how-
    to/kubernetes-service-accounts). For example, `my-
    project.svc.id.goog[my-namespace/my-kubernetes-sa]`. *
    `group:{emailid}`: An email address that represents a Google group. For
    example, `admins@example.com`. * `domain:{domain}`: The G Suite domain
    (primary) that represents all the users of that domain. For example,
    `google.com` or `example.com`. * `principal://iam.googleapis.com/locatio
    ns/global/workforcePools/{pool_id}/subject/{subject_attribute_value}`: A
    single identity in a workforce identity pool. * `principalSet://iam.goog
    leapis.com/locations/global/workforcePools/{pool_id}/group/{group_id}`:
    All workforce identities in a group. * `principalSet://iam.googleapis.co
    m/locations/global/workforcePools/{pool_id}/attribute.{attribute_name}/{
    attribute_value}`: All workforce identities with a specific attribute
    value. * `principalSet://iam.googleapis.com/locations/global/workforcePo
    ols/{pool_id}/*`: All identities in a workforce identity pool. * `princi
    pal://iam.googleapis.com/projects/{project_number}/locations/global/work
    loadIdentityPools/{pool_id}/subject/{subject_attribute_value}`: A single
    identity in a workload identity pool. * `principalSet://iam.googleapis.c
    om/projects/{project_number}/locations/global/workloadIdentityPools/{poo
    l_id}/group/{group_id}`: A workload identity pool group. * `principalSet
    ://iam.googleapis.com/projects/{project_number}/locations/global/workloa
    dIdentityPools/{pool_id}/attribute.{attribute_name}/{attribute_value}`:
    All identities in a workload identity pool with a certain attribute. * `
    principalSet://iam.googleapis.com/projects/{project_number}/locations/gl
    obal/workloadIdentityPools/{pool_id}/*`: All identities in a workload
    identity pool. * `deleted:user:{emailid}?uid={uniqueid}`: An email
    address (plus unique identifier) representing a user that has been
    recently deleted. For example,
    `alice@example.com?uid=123456789012345678901`. If the user is recovered,
    this value reverts to `user:{emailid}` and the recovered user retains
    the role in the binding. *
    `deleted:serviceAccount:{emailid}?uid={uniqueid}`: An email address
    (plus unique identifier) representing a service account that has been
    recently deleted. For example, `my-other-
    app@appspot.gserviceaccount.com?uid=123456789012345678901`. If the
    service account is undeleted, this value reverts to
    `serviceAccount:{emailid}` and the undeleted service account retains the
    role in the binding. * `deleted:group:{emailid}?uid={uniqueid}`: An
    email address (plus unique identifier) representing a Google group that
    has been recently deleted. For example,
    `admins@example.com?uid=123456789012345678901`. If the group is
    recovered, this value reverts to `group:{emailid}` and the recovered
    group retains the role in the binding. * `deleted:principal://iam.google
    apis.com/locations/global/workforcePools/{pool_id}/subject/{subject_attr
    ibute_value}`: Deleted single identity in a workforce identity pool. For
    example, `deleted:principal://iam.googleapis.com/locations/global/workfo
    rcePools/my-pool-id/subject/my-subject-attribute-value`.
  role: Role that is assigned to the list of `members`, or principals. For
    example, `roles/viewer`, `roles/editor`, or `roles/owner`. For an
    overview of the IAM roles and permissions, see the [IAM
    documentation](https://cloud.google.com/iam/docs/roles-overview). For a
    list of the available pre-defined roles, see
    [here](https://cloud.google.com/iam/docs/understanding-roles).
GoogleTypeExprr   r   Tr&   r,   r   N)r   r   r   r   r   r   r   	conditionr   membersroler!   r   r"   r#   r  r  u  s@    Ob $$%5q9)!!!d3'			q	!$r"   r  c                       \ rS rSrSr\R                  " SSSS9r\R                  " SSSS9r\R                  " S	5      r
\R                  " S
\R                  R                  S9rSrg)GoogleIamV1Policyi  aw  An Identity and Access Management (IAM) policy, which specifies access
controls for Google Cloud resources. A `Policy` is a collection of
`bindings`. A `binding` binds one or more `members`, or principals, to a
single `role`. Principals can be user accounts, service accounts, Google
groups, and domains (such as G Suite). A `role` is a named list of
permissions; each `role` can be an IAM predefined role or a user-created
custom role. For some types of Google Cloud resources, a `binding` can also
specify a `condition`, which is a logical expression that allows access to a
resource only if the expression evaluates to `true`. A condition can add
constraints based on attributes of the request, the resource, or both. To
learn which resources support conditions in their IAM policies, see the [IAM
documentation](https://cloud.google.com/iam/help/conditions/resource-
policies). **JSON example:** ``` { "bindings": [ { "role":
"roles/resourcemanager.organizationAdmin", "members": [
"user:mike@example.com", "group:admins@example.com", "domain:google.com",
"serviceAccount:my-project-id@appspot.gserviceaccount.com" ] }, { "role":
"roles/resourcemanager.organizationViewer", "members": [
"user:eve@example.com" ], "condition": { "title": "expirable access",
"description": "Does not grant access after Sep 2020", "expression":
"request.time < timestamp('2020-10-01T00:00:00.000Z')", } } ], "etag":
"BwWWja0YfJA=", "version": 3 } ``` **YAML example:** ``` bindings: -
members: - user:mike@example.com - group:admins@example.com -
domain:google.com - serviceAccount:my-project-id@appspot.gserviceaccount.com
role: roles/resourcemanager.organizationAdmin - members: -
user:eve@example.com role: roles/resourcemanager.organizationViewer
condition: title: expirable access description: Does not grant access after
Sep 2020 expression: request.time < timestamp('2020-10-01T00:00:00.000Z')
etag: BwWWja0YfJA= version: 3 ``` For a description of IAM and its features,
see the [IAM documentation](https://cloud.google.com/iam/docs/).

Fields:
  auditConfigs: Specifies cloud audit logging configuration for this policy.
  bindings: Associates a list of `members`, or principals, with a `role`.
    Optionally, may specify a `condition` that determines how and when the
    `bindings` are applied. Each of the `bindings` must contain at least one
    principal. The `bindings` in a `Policy` can refer to up to 1,500
    principals; up to 250 of these principals can be Google groups. Each
    occurrence of a principal counts towards these limits. For example, if
    the `bindings` grant 50 different roles to `user:alice@example.com`, and
    not to any other principal, then you can add another 1,450 principals to
    the `bindings` in the `Policy`.
  etag: `etag` is used for optimistic concurrency control as a way to help
    prevent simultaneous updates of a policy from overwriting each other. It
    is strongly suggested that systems make use of the `etag` in the read-
    modify-write cycle to perform policy updates in order to avoid race
    conditions: An `etag` is returned in the response to `getIamPolicy`, and
    systems are expected to put that etag in the request to `setIamPolicy`
    to ensure that their change will be applied to the same version of the
    policy. **Important:** If you use IAM Conditions, you must include the
    `etag` field whenever you call `setIamPolicy`. If you omit this field,
    then IAM allows you to overwrite a version `3` policy with a version `1`
    policy, and all of the conditions in the version `3` policy are lost.
  version: Specifies the format of the policy. Valid values are `0`, `1`,
    and `3`. Requests that specify an invalid value are rejected. Any
    operation that affects conditional role bindings must specify version
    `3`. This requirement applies to the following operations: * Getting a
    policy that includes a conditional role binding * Adding a conditional
    role binding to a policy * Changing a conditional role binding in a
    policy * Removing any role binding, with or without a condition, from a
    policy that includes conditions **Important:** If you use IAM
    Conditions, you must include the `etag` field whenever you call
    `setIamPolicy`. If you omit this field, then IAM allows you to overwrite
    a version `3` policy with a version `1` policy, and all of the
    conditions in the version `3` policy are lost. If a policy does not
    include any conditions, operations on that policy may specify any valid
    version or leave the field unset. To learn which resources support
    conditions in their IAM policies, see the [IAM
    documentation](https://cloud.google.com/iam/help/conditions/resource-
    policies).
r  r   Tr&   r  r   r,   rA   r5   r   N)r   r   r   r   r   r   r   auditConfigsbindingsr/   rb  r7   r8   r9   r  r!   r   r"   r#   r  r    sc    EN ''(@!dS,##$8!dK(			a	 $""1i.?.?.E.EF'r"   r  c                   b    \ rS rSrSr\R                  " SS5      r\R                  " S5      r	Sr
g)GoogleIamV1SetIamPolicyRequesti  a
  Request message for `SetIamPolicy` method.

Fields:
  policy: REQUIRED: The complete policy to be applied to the `resource`. The
    size of the policy is limited to a few 10s of KB. An empty policy is a
    valid policy but certain Google Cloud services (such as Projects) might
    reject them.
  updateMask: OPTIONAL: A FieldMask specifying which fields of the policy to
    modify. Only the fields in the mask will be modified. If no mask is
    provided, the following default mask is used: `paths: "bindings, etag"`
r  r   r   r   N)r   r   r   r   r   r   r   policyr   
updateMaskr!   r   r"   r#   r  r    s,    
 !!"5q9&$$Q'*r"   r  c                   :    \ rS rSrSr\R                  " SSS9rSrg)$GoogleIamV1TestIamPermissionsRequesti+  a3  Request message for `TestIamPermissions` method.

Fields:
  permissions: The set of permissions to check for the `resource`.
    Permissions with wildcards (such as `*` or `storage.*`) are not allowed.
    For more information see [IAM
    Overview](https://cloud.google.com/iam/docs/overview#permissions).
r   Tr&   r   N	r   r   r   r   r   r   r   permissionsr!   r   r"   r#   r  r  +  s     %%a$7+r"   r  c                   :    \ rS rSrSr\R                  " SSS9rSrg)%GoogleIamV1TestIamPermissionsResponsei8  zResponse message for `TestIamPermissions` method.

Fields:
  permissions: A subset of `TestPermissionsRequest.permissions` that the
    caller is allowed.
r   Tr&   r   Nr  r   r"   r#   r  r  8  s     %%a$7+r"   r  c                       \ rS rSrSr\R                  " S5      r\R                  " SSSS9r	\R                  " SSS9r
S	rg
)'GoogleLongrunningListOperationsResponseiC  a  The response message for Operations.ListOperations.

Fields:
  nextPageToken: The standard List next-page token.
  operations: A list of operations that matches the specified filter in the
    request.
  unreachable: Unordered list. Unreachable resources. Populated when the
    request sets `ListOperationsRequest.return_partial_success` and reads
    across collections e.g. when attempting to list all resources across all
    supported locations.
r   GoogleLongrunningOperationr   Tr&   r,   r   N)r   r   r   r   r   r   r   ro  r   
operationsunreachabler!   r   r"   r#   r  r  C  sA    
 ''*-%%&BAPTU*%%a$7+r"   r  c                   z   \ rS rSrSr\R                  " S5       " S S\R                  5      5       r	\R                  " S5       " S S\R                  5      5       r
\R                  " S5      r\R                  " S	S
5      r\R                  " SS5      r\R                   " S5      r\R                  " SS5      rSrg)r  iU  a  This resource represents a long-running operation that is the result of
a network API call.

Messages:
  MetadataValue: Service-specific metadata associated with the operation. It
    typically contains progress information and common metadata such as
    create time. Some services might not provide such metadata. Any method
    that returns a long-running operation should document the metadata type,
    if any.
  ResponseValue: The normal, successful response of the operation. If the
    original method returns no data on success, such as `Delete`, the
    response is `google.protobuf.Empty`. If the original method is standard
    `Get`/`Create`/`Update`, the response should be the resource. For other
    methods, the response should have the type `XxxResponse`, where `Xxx` is
    the original method name. For example, if the original method name is
    `TakeSnapshot()`, the inferred response type is `TakeSnapshotResponse`.

Fields:
  done: If the value is `false`, it means the operation is still in
    progress. If `true`, the operation is completed, and either `error` or
    `response` is available.
  error: The error result of the operation in case of failure or
    cancellation.
  metadata: Service-specific metadata associated with the operation. It
    typically contains progress information and common metadata such as
    create time. Some services might not provide such metadata. Any method
    that returns a long-running operation should document the metadata type,
    if any.
  name: The server-assigned name, which is only unique within the same
    service that originally returns it. If you use the default HTTP mapping,
    the `name` should be a resource name ending with
    `operations/{unique_id}`.
  response: The normal, successful response of the operation. If the
    original method returns no data on success, such as `Delete`, the
    response is `google.protobuf.Empty`. If the original method is standard
    `Get`/`Create`/`Update`, the response should be the resource. For other
    methods, the response should have the type `XxxResponse`, where `Xxx` is
    the original method name. For example, if the original method name is
    `TakeSnapshot()`, the inferred response type is `TakeSnapshotResponse`.
r   c                   f    \ rS rSrSr " S S\R                  5      r\R                  " SSSS9r	Sr
g	)
(GoogleLongrunningOperation.MetadataValuei  a  Service-specific metadata associated with the operation. It typically
contains progress information and common metadata such as create time.
Some services might not provide such metadata. Any method that returns a
long-running operation should document the metadata type, if any.

Messages:
  AdditionalProperty: An additional property for a MetadataValue object.

Fields:
  additionalProperties: Properties of the object. Contains field @type
    with type URL.
c                   b    \ rS rSrSr\R                  " S5      r\R                  " SS5      r	Sr
g);GoogleLongrunningOperation.MetadataValue.AdditionalPropertyi  zAn additional property for a MetadataValue object.

Fields:
  key: Name of the additional property.
  value: A extra_types.JsonValue attribute.
r   r   r   r   Nr   r   r"   r#   r$   r    r%   r"   r$   r   Tr&   r   Nr(   r   r"   r#   MetadataValuer    s4    	AY.. 	A %112FTXYr"   r  c                   f    \ rS rSrSr " S S\R                  5      r\R                  " SSSS9r	Sr
g	)
(GoogleLongrunningOperation.ResponseValuei  a  The normal, successful response of the operation. If the original
method returns no data on success, such as `Delete`, the response is
`google.protobuf.Empty`. If the original method is standard
`Get`/`Create`/`Update`, the response should be the resource. For other
methods, the response should have the type `XxxResponse`, where `Xxx` is
the original method name. For example, if the original method name is
`TakeSnapshot()`, the inferred response type is `TakeSnapshotResponse`.

Messages:
  AdditionalProperty: An additional property for a ResponseValue object.

Fields:
  additionalProperties: Properties of the object. Contains field @type
    with type URL.
c                   b    \ rS rSrSr\R                  " S5      r\R                  " SS5      r	Sr
g);GoogleLongrunningOperation.ResponseValue.AdditionalPropertyi  zAn additional property for a ResponseValue object.

Fields:
  key: Name of the additional property.
  value: A extra_types.JsonValue attribute.
r   r   r   r   Nr   r   r"   r#   r$   r
    r%   r"   r$   r   Tr&   r   Nr(   r   r"   r#   ResponseValuer    s4     	AY.. 	A %112FTXYr"   r  r   GoogleRpcStatusr   r,   rA   rB   r   N)r   r   r   r   r   r   r-   r   r)   r  r  rr   doner   errormetadatar   r   responser!   r   r"   r#   r  r  U  s    'R !!"89Zi'' Z :Z6 !!"89Zi'' Z :Z< 
			"$

 
 !2A
6%##OQ7(			q	!$##OQ7(r"   r  c                       \ rS rSrSrSrg)GoogleProtobufEmptyi  a  A generic empty message that you can re-use to avoid defining duplicated
empty messages in your APIs. A typical example is to use it as the request
or the response type of an API method. For instance: service Foo { rpc
Bar(google.protobuf.Empty) returns (google.protobuf.Empty); }
r   Nr   r   r"   r#   r  r    r%  r"   r  c                       \ rS rSrSr\R                  " S5       " S S\R                  5      5       r	\R                  " S\R                  R                  S9r\R                  " SSS	S
9r\R                   " S5      rSrg)r  i  a  The `Status` type defines a logical error model that is suitable for
different programming environments, including REST APIs and RPC APIs. It is
used by [gRPC](https://github.com/grpc). Each `Status` message contains
three pieces of data: error code, error message, and error details. You can
find out more about this error model and how to work with it in the [API
Design Guide](https://cloud.google.com/apis/design/errors).

Messages:
  DetailsValueListEntry: A DetailsValueListEntry object.

Fields:
  code: The status code, which should be an enum value of google.rpc.Code.
  details: A list of messages that carry the error details. There is a
    common set of message types for APIs to use.
  message: A developer-facing error message, which should be in English. Any
    user-facing error message should be localized and sent in the
    google.rpc.Status.details field, or localized by the client.
r   c                   f    \ rS rSrSr " S S\R                  5      r\R                  " SSSS9r	Sr
g	)
%GoogleRpcStatus.DetailsValueListEntryi  zA DetailsValueListEntry object.

Messages:
  AdditionalProperty: An additional property for a DetailsValueListEntry
    object.

Fields:
  additionalProperties: Properties of the object. Contains field @type
    with type URL.
c                   b    \ rS rSrSr\R                  " S5      r\R                  " SS5      r	Sr
g)8GoogleRpcStatus.DetailsValueListEntry.AdditionalPropertyi  zAn additional property for a DetailsValueListEntry object.

Fields:
  key: Name of the additional property.
  value: A extra_types.JsonValue attribute.
r   r   r   r   Nr   r   r"   r#   r$   r    r%   r"   r$   r   Tr&   r   Nr(   r   r"   r#   DetailsValueListEntryr    r+   r"   r  r   r5   r   Tr&   r,   r   N)r   r   r   r   r   r   r-   r   r)   r  r7   r8   r9   coder   detailsr   messager!   r   r"   r#   r  r    s|    & !!"89Zi// Z :Z2 
		9+<+<+B+B	C$""#:AM'!!!$'r"   r  c                       \ rS rSrSr\R                  " S5      r\R                  " S5      r\R                  " S5      r	\R                  " S5      r
Srg)	r  i  aq  Represents a textual expression in the Common Expression Language (CEL)
syntax. CEL is a C-like expression language. The syntax and semantics of CEL
are documented at https://github.com/google/cel-spec. Example (Comparison):
title: "Summary size limit" description: "Determines if a summary is less
than 100 chars" expression: "document.summary.size() < 100" Example
(Equality): title: "Requestor is owner" description: "Determines if
requestor is the document owner" expression: "document.owner ==
request.auth.claims.email" Example (Logic): title: "Public documents"
description: "Determine whether the document should be publicly visible"
expression: "document.type != 'private' && document.type != 'internal'"
Example (Data Manipulation): title: "Notification string" description:
"Create a notification string with a timestamp." expression: "'New message
received at ' + string(document.create_time)" The exact variables and
functions that may be referenced within an expression are determined by the
service that evaluates it. See the service documentation for additional
information.

Fields:
  description: Optional. Description of the expression. This is a longer
    text which describes the expression, e.g. when hovered over it in a UI.
  expression: Textual representation of an expression in Common Expression
    Language syntax.
  location: Optional. String indicating the location of the expression for
    error reporting, e.g. a file name and a position in the file.
  title: Optional. Title for the expression, i.e. a short string describing
    its purpose. This can be used e.g. in UIs which allow to enter the
    expression.
r   r   r,   rA   r   N)r   r   r   r   r   r   r   r  
expressionlocationtitler!   r   r"   r#   r  r    sI    : %%a(+$$Q'*""1%(



"%r"   r  c                   `    \ rS rSrSr\R                  " SS5      r\R                  " SSS9r	Sr
g	)
MlProjectsExplainRequesti!  a)  A MlProjectsExplainRequest object.

Fields:
  googleCloudMlV1ExplainRequest: A GoogleCloudMlV1ExplainRequest resource to
    be passed as the request body.
  name: Required. The resource name of a model or a version. Authorization:
    requires the `predict` permission on the specified resource.
r   r   r   Trequiredr   N)r   r   r   r   r   r   r   googleCloudMlV1ExplainRequestr   r   r!   r   r"   r#   r!  r!  !  0     #,"8"89XZ["\			q4	0$r"   r!  c                   :    \ rS rSrSr\R                  " SSS9rSrg)MlProjectsGetConfigRequesti/  zRA MlProjectsGetConfigRequest object.

Fields:
  name: Required. The project name.
r   Tr"  r   N	r   r   r   r   r   r   r   r   r!   r   r"   r#   r'  r'  /       
		q4	0$r"   r'  c                   `    \ rS rSrSr\R                  " SS5      r\R                  " SSS9r	Sr
g	)
MlProjectsJobsCancelRequesti9  zA MlProjectsJobsCancelRequest object.

Fields:
  googleCloudMlV1CancelJobRequest: A GoogleCloudMlV1CancelJobRequest
    resource to be passed as the request body.
  name: Required. The name of the job to cancel.
r   r   r   Tr"  r   N)r   r   r   r   r   r   r   googleCloudMlV1CancelJobRequestr   r   r!   r   r"   r#   r+  r+  9  0     %.$:$:;\^_$`!			q4	0$r"   r+  c                   `    \ rS rSrSr\R                  " SS5      r\R                  " SSS9r	Sr
g	)
MlProjectsJobsCreateRequestiF  zA MlProjectsJobsCreateRequest object.

Fields:
  googleCloudMlV1Job: A GoogleCloudMlV1Job resource to be passed as the
    request body.
  parent: Required. The project name.
rT  r   r   Tr"  r   N)r   r   r   r   r   r   r   googleCloudMlV1Jobr   parentr!   r   r"   r#   r/  r/  F  s/     !--.BAF  T2&r"   r/  c                       \ rS rSrSr\R                  " S\R                  R                  S9r	\R                  " SSS9rSrg	)
!MlProjectsJobsGetIamPolicyRequestiS  a-  A MlProjectsJobsGetIamPolicyRequest object.

Fields:
  options_requestedPolicyVersion: Optional. The maximum policy version that
    will be used to format the policy. Valid values are 0, 1, and 3.
    Requests specifying an invalid value will be rejected. Requests for
    policies with any conditional role bindings must specify version 3.
    Policies with no conditional role bindings may specify any valid value
    or leave the field unset. The policy in the response might use the
    policy version that you specified, or it might use a lower policy
    version. For example, if you specify version 3, but the policy has no
    conditional role bindings, the response uses version 1. To learn which
    resources support conditions in their IAM policies, see the [IAM
    documentation](https://cloud.google.com/iam/help/conditions/resource-
    policies).
  resource: REQUIRED: The resource for which the policy is being requested.
    See [Resource
    names](https://cloud.google.com/apis/design/resource_names) for the
    appropriate value for this field.
r   r5   r   Tr"  r   Nr   r   r   r   r   r   r7   r8   r9   options_requestedPolicyVersionr   resourcer!   r   r"   r#   r3  r3  S  :    * $-#9#9!YEVEVE\E\#] ""1t4(r"   r3  c                   :    \ rS rSrSr\R                  " SSS9rSrg)MlProjectsJobsGetRequestim  zmA MlProjectsJobsGetRequest object.

Fields:
  name: Required. The name of the job to get the description of.
r   Tr"  r   Nr(  r   r"   r#   r9  r9  m  r)  r"   r9  c                       \ rS rSrSr\R                  " S5      r\R                  " S\R                  R                  S9r\R                  " S5      r\R                  " SSS	9rS
rg)MlProjectsJobsListRequestiw  a  A MlProjectsJobsListRequest object.

Fields:
  filter: Optional. Specifies the subset of jobs to retrieve. You can filter
    on the value of one or more attributes of the job object. For example,
    retrieve jobs with a job identifier that starts with 'census': gcloud
    ai-platform jobs list --filter='jobId:census*' List all failed jobs with
    names that start with 'rnn': gcloud ai-platform jobs list
    --filter='jobId:rnn* AND state:FAILED' For more examples, see the guide
    to monitoring jobs.
  pageSize: Optional. The number of jobs to retrieve per "page" of results.
    If there are more remaining results than this number, the response
    message will contain a valid value in the `next_page_token` field. The
    default value is 20, and the maximum page size is 100.
  pageToken: Optional. A page token to request the next page of results. You
    get the token from the `next_page_token` field of the response from the
    previous call.
  parent: Required. The name of the project for which to list jobs.
r   r   r5   r,   rA   Tr"  r   Nr   r   r   r   r   r   r   filterr7   r8   r9   pageSize	pageTokenr1  r!   r   r"   r#   r;  r;  w  sY    (   #&##Ay/@/@/F/FG(##A&)  T2&r"   r;  c                       \ rS rSrSr\R                  " SS5      r\R                  " SSS9r	\R                  " S5      r
S	rg
)MlProjectsJobsPatchRequesti  a  A MlProjectsJobsPatchRequest object.

Fields:
  googleCloudMlV1Job: A GoogleCloudMlV1Job resource to be passed as the
    request body.
  name: Required. The job name.
  updateMask: Required. Specifies the path, relative to `Job`, of the field
    to update. To adopt etag mechanism, include `etag` field in the mask,
    and include the `etag` value in your job resource. For example, to
    change the labels of a job, the `update_mask` parameter would be
    specified as `labels`, `etag`, and the `PATCH` request body would
    specify the new value, as follows: { "labels": { "owner": "Google",
    "color": "Blue" } "etag": "33a64df551425fcc55e4d42a148795d9f25f89d4" }
    If `etag` matches the one on the server, the labels of the job will be
    replaced with the given ones, and the server end `etag` will be
    recalculated. Currently the only supported update masks are `labels` and
    `etag`.
rT  r   r   Tr"  r,   r   N)r   r   r   r   r   r   r   r0  r   r   r  r!   r   r"   r#   rA  rA    s?    & !--.BAF			q4	0$$$Q'*r"   rA  c                   `    \ rS rSrSr\R                  " SS5      r\R                  " SSS9r	Sr
g	)
!MlProjectsJobsSetIamPolicyRequesti  as  A MlProjectsJobsSetIamPolicyRequest object.

Fields:
  googleIamV1SetIamPolicyRequest: A GoogleIamV1SetIamPolicyRequest resource
    to be passed as the request body.
  resource: REQUIRED: The resource for which the policy is being specified.
    See [Resource
    names](https://cloud.google.com/apis/design/resource_names) for the
    appropriate value for this field.
r  r   r   Tr"  r   Nr   r   r   r   r   r   r   googleIamV1SetIamPolicyRequestr   r6  r!   r   r"   r#   rC  rC    0    	 $-#9#9:Z\]#^ ""1t4(r"   rC  c                   `    \ rS rSrSr\R                  " SS5      r\R                  " SSS9r	Sr
g	)
'MlProjectsJobsTestIamPermissionsRequesti  a  A MlProjectsJobsTestIamPermissionsRequest object.

Fields:
  googleIamV1TestIamPermissionsRequest: A
    GoogleIamV1TestIamPermissionsRequest resource to be passed as the
    request body.
  resource: REQUIRED: The resource for which the policy detail is being
    requested. See [Resource
    names](https://cloud.google.com/apis/design/resource_names) for the
    appropriate value for this field.
r  r   r   Tr"  r   Nr   r   r   r   r   r   r   $googleIamV1TestIamPermissionsRequestr   r6  r!   r   r"   r#   rH  rH    0    
 *3)?)?@fhi)j&""1t4(r"   rH  c                   :    \ rS rSrSr\R                  " SSS9rSrg)MlProjectsLocationsGetRequesti  z]A MlProjectsLocationsGetRequest object.

Fields:
  name: Required. The name of the location.
r   Tr"  r   Nr(  r   r"   r#   rM  rM    r)  r"   rM  c                       \ rS rSrSr\R                  " S\R                  R                  S9r	\R                  " S5      r\R                  " SSS9rS	rg
)MlProjectsLocationsListRequesti  a  A MlProjectsLocationsListRequest object.

Fields:
  pageSize: Optional. The number of locations to retrieve per "page" of
    results. If there are more remaining results than this number, the
    response message will contain a valid value in the `next_page_token`
    field. The default value is 20, and the maximum page size is 100.
  pageToken: Optional. A page token to request the next page of results. You
    get the token from the `next_page_token` field of the response from the
    previous call.
  parent: Required. The name of the project for which available locations
    are to be listed (since some locations might be whitelisted for specific
    projects).
r   r5   r   r,   Tr"  r   N)r   r   r   r   r   r   r7   r8   r9   r>  r   r?  r1  r!   r   r"   r#   rO  rO    sI     ##Ay/@/@/F/FG(##A&)  T2&r"   rO  c                   :    \ rS rSrSr\R                  " SSS9rSrg)*MlProjectsLocationsOperationsCancelRequesti  zzA MlProjectsLocationsOperationsCancelRequest object.

Fields:
  name: The name of the operation resource to be cancelled.
r   Tr"  r   Nr(  r   r"   r#   rQ  rQ    r)  r"   rQ  c                   :    \ rS rSrSr\R                  " SSS9rSrg)'MlProjectsLocationsOperationsGetRequesti  zgA MlProjectsLocationsOperationsGetRequest object.

Fields:
  name: The name of the operation resource.
r   Tr"  r   Nr(  r   r"   r#   rS  rS    r)  r"   rS  c                       \ rS rSrSr\R                  " SS5      r\R                  " SSS9r	\R                  " S5      r
S	rg
)'MlProjectsLocationsStudiesCreateRequesti  a  A MlProjectsLocationsStudiesCreateRequest object.

Fields:
  googleCloudMlV1Study: A GoogleCloudMlV1Study resource to be passed as the
    request body.
  parent: Required. The project and location that the study belongs to.
    Format: projects/{project}/locations/{location}
  studyId: Required. The ID to use for the study, which will become the
    final component of the study's resource name.
r  r   r   Tr"  r,   r   N)r   r   r   r   r   r   r   googleCloudMlV1Studyr   r1  studyIdr!   r   r"   r#   rU  rU    s?    	 #//0FJ  T2&!!!$'r"   rU  c                   :    \ rS rSrSr\R                  " SSS9rSrg)'MlProjectsLocationsStudiesDeleteRequesti  z]A MlProjectsLocationsStudiesDeleteRequest object.

Fields:
  name: Required. The study name.
r   Tr"  r   Nr(  r   r"   r#   rY  rY    r)  r"   rY  c                   :    \ rS rSrSr\R                  " SSS9rSrg)$MlProjectsLocationsStudiesGetRequesti  zZA MlProjectsLocationsStudiesGetRequest object.

Fields:
  name: Required. The study name.
r   Tr"  r   Nr(  r   r"   r#   r[  r[    r)  r"   r[  c                   :    \ rS rSrSr\R                  " SSS9rSrg)%MlProjectsLocationsStudiesListRequesti$  zA MlProjectsLocationsStudiesListRequest object.

Fields:
  parent: Required. The project and location that the study belongs to.
    Format: projects/{project}/locations/{location}
r   Tr"  r   N	r   r   r   r   r   r   r   r1  r!   r   r"   r#   r]  r]  $  rk  r"   r]  c                   `    \ rS rSrSr\R                  " SS5      r\R                  " SSS9r	Sr
g	)
5MlProjectsLocationsStudiesTrialsAddMeasurementRequesti/  zA MlProjectsLocationsStudiesTrialsAddMeasurementRequest object.

Fields:
  googleCloudMlV1AddTrialMeasurementRequest: A
    GoogleCloudMlV1AddTrialMeasurementRequest resource to be passed as the
    request body.
  name: Required. The trial name.
r]   r   r   Tr"  r   N)r   r   r   r   r   r   r   )googleCloudMlV1AddTrialMeasurementRequestr   r   r!   r   r"   r#   r`  r`  /  s0     /8.D.DEprs.t+			q4	0$r"   r`  c                   `    \ rS rSrSr\R                  " SS5      r\R                  " SSS9r	Sr
g	)
>MlProjectsLocationsStudiesTrialsCheckEarlyStoppingStateRequesti=  a  A MlProjectsLocationsStudiesTrialsCheckEarlyStoppingStateRequest object.

Fields:
  googleCloudMlV1CheckTrialEarlyStoppingStateRequest: A
    GoogleCloudMlV1CheckTrialEarlyStoppingStateRequest resource to be passed
    as the request body.
  name: Required. The trial name.
r   r   r   Tr"  r   N)r   r   r   r   r   r   r   2googleCloudMlV1CheckTrialEarlyStoppingStateRequestr   r   r!   r   r"   r#   rc  rc  =  s<     8A7M7M  OC  EF  8G4			q4	0$r"   rc  c                   `    \ rS rSrSr\R                  " SS5      r\R                  " SSS9r	Sr
g	)
/MlProjectsLocationsStudiesTrialsCompleteRequestiK  zA MlProjectsLocationsStudiesTrialsCompleteRequest object.

Fields:
  googleCloudMlV1CompleteTrialRequest: A GoogleCloudMlV1CompleteTrialRequest
    resource to be passed as the request body.
  name: Required. The trial name.metat
r   r   r   Tr"  r   N)r   r   r   r   r   r   r   #googleCloudMlV1CompleteTrialRequestr   r   r!   r   r"   r#   rf  rf  K  s0     )2(>(>?dfg(h%			q4	0$r"   rf  c                   `    \ rS rSrSr\R                  " SS5      r\R                  " SSS9r	Sr
g	)
-MlProjectsLocationsStudiesTrialsCreateRequestiX  zA MlProjectsLocationsStudiesTrialsCreateRequest object.

Fields:
  googleCloudMlV1Trial: A GoogleCloudMlV1Trial resource to be passed as the
    request body.
  parent: Required. The name of the study that the trial belongs to.
r|  r   r   Tr"  r   N)r   r   r   r   r   r   r   googleCloudMlV1Trialr   r1  r!   r   r"   r#   ri  ri  X  /     #//0FJ  T2&r"   ri  c                   :    \ rS rSrSr\R                  " SSS9rSrg)-MlProjectsLocationsStudiesTrialsDeleteRequestie  zcA MlProjectsLocationsStudiesTrialsDeleteRequest object.

Fields:
  name: Required. The trial name.
r   Tr"  r   Nr(  r   r"   r#   rm  rm  e  r)  r"   rm  c                   :    \ rS rSrSr\R                  " SSS9rSrg)*MlProjectsLocationsStudiesTrialsGetRequestio  z`A MlProjectsLocationsStudiesTrialsGetRequest object.

Fields:
  name: Required. The trial name.
r   Tr"  r   Nr(  r   r"   r#   ro  ro  o  r)  r"   ro  c                   `    \ rS rSrSr\R                  " SS5      r\R                  " SSS9r	Sr
g	)
8MlProjectsLocationsStudiesTrialsListOptimalTrialsRequestiy  a,  A MlProjectsLocationsStudiesTrialsListOptimalTrialsRequest object.

Fields:
  googleCloudMlV1ListOptimalTrialsRequest: A
    GoogleCloudMlV1ListOptimalTrialsRequest resource to be passed as the
    request body.
  parent: Required. The name of the study that the pareto-optimal trial
    belongs to.
ry  r   r   Tr"  r   N)r   r   r   r   r   r   r   'googleCloudMlV1ListOptimalTrialsRequestr   r1  r!   r   r"   r#   rq  rq  y  s0     -6,B,BClno,p)  T2&r"   rq  c                   :    \ rS rSrSr\R                  " SSS9rSrg)+MlProjectsLocationsStudiesTrialsListRequesti  zA MlProjectsLocationsStudiesTrialsListRequest object.

Fields:
  parent: Required. The name of the study that the trial belongs to.
r   Tr"  r   Nr^  r   r"   r#   rt  rt    s       T2&r"   rt  c                   `    \ rS rSrSr\R                  " SS5      r\R                  " SSS9r	Sr
g	)
+MlProjectsLocationsStudiesTrialsStopRequesti  zA MlProjectsLocationsStudiesTrialsStopRequest object.

Fields:
  googleCloudMlV1StopTrialRequest: A GoogleCloudMlV1StopTrialRequest
    resource to be passed as the request body.
  name: Required. The trial name.
r;  r   r   Tr"  r   N)r   r   r   r   r   r   r   googleCloudMlV1StopTrialRequestr   r   r!   r   r"   r#   rv  rv    r-  r"   rv  c                   `    \ rS rSrSr\R                  " SS5      r\R                  " SSS9r	Sr
g	)
.MlProjectsLocationsStudiesTrialsSuggestRequesti  a  A MlProjectsLocationsStudiesTrialsSuggestRequest object.

Fields:
  googleCloudMlV1SuggestTrialsRequest: A GoogleCloudMlV1SuggestTrialsRequest
    resource to be passed as the request body.
  parent: Required. The name of the study that the trial belongs to.
rx  r   r   Tr"  r   N)r   r   r   r   r   r   r   #googleCloudMlV1SuggestTrialsRequestr   r1  r!   r   r"   r#   ry  ry    s0     )2(>(>?dfg(h%  T2&r"   ry  c                   `    \ rS rSrSr\R                  " SS5      r\R                  " SSS9r	Sr
g	)
MlProjectsModelsCreateRequesti  zA MlProjectsModelsCreateRequest object.

Fields:
  googleCloudMlV1Model: A GoogleCloudMlV1Model resource to be passed as the
    request body.
  parent: Required. The project name.
rv  r   r   Tr"  r   N)r   r   r   r   r   r   r   googleCloudMlV1Modelr   r1  r!   r   r"   r#   r|  r|    rk  r"   r|  c                   :    \ rS rSrSr\R                  " SSS9rSrg)MlProjectsModelsDeleteRequesti  zZA MlProjectsModelsDeleteRequest object.

Fields:
  name: Required. The name of the model.
r   Tr"  r   Nr(  r   r"   r#   r  r    r)  r"   r  c                       \ rS rSrSr\R                  " S\R                  R                  S9r	\R                  " SSS9rSrg	)
#MlProjectsModelsGetIamPolicyRequesti  a/  A MlProjectsModelsGetIamPolicyRequest object.

Fields:
  options_requestedPolicyVersion: Optional. The maximum policy version that
    will be used to format the policy. Valid values are 0, 1, and 3.
    Requests specifying an invalid value will be rejected. Requests for
    policies with any conditional role bindings must specify version 3.
    Policies with no conditional role bindings may specify any valid value
    or leave the field unset. The policy in the response might use the
    policy version that you specified, or it might use a lower policy
    version. For example, if you specify version 3, but the policy has no
    conditional role bindings, the response uses version 1. To learn which
    resources support conditions in their IAM policies, see the [IAM
    documentation](https://cloud.google.com/iam/help/conditions/resource-
    policies).
  resource: REQUIRED: The resource for which the policy is being requested.
    See [Resource
    names](https://cloud.google.com/apis/design/resource_names) for the
    appropriate value for this field.
r   r5   r   Tr"  r   Nr4  r   r"   r#   r  r    r7  r"   r  c                   :    \ rS rSrSr\R                  " SSS9rSrg)MlProjectsModelsGetRequesti  zWA MlProjectsModelsGetRequest object.

Fields:
  name: Required. The name of the model.
r   Tr"  r   Nr(  r   r"   r#   r  r    r)  r"   r  c                       \ rS rSrSr\R                  " S5      r\R                  " S\R                  R                  S9r\R                  " S5      r\R                  " SSS	9rS
rg)MlProjectsModelsListRequesti  a  A MlProjectsModelsListRequest object.

Fields:
  filter: Optional. Specifies the subset of models to retrieve.
  pageSize: Optional. The number of models to retrieve per "page" of
    results. If there are more remaining results than this number, the
    response message will contain a valid value in the `next_page_token`
    field. The default value is 20, and the maximum page size is 100.
  pageToken: Optional. A page token to request the next page of results. You
    get the token from the `next_page_token` field of the response from the
    previous call.
  parent: Required. The name of the project whose models are to be listed.
r   r   r5   r,   rA   Tr"  r   Nr<  r   r"   r#   r  r    Y       #&##Ay/@/@/F/FG(##A&)  T2&r"   r  c                       \ rS rSrSr\R                  " SS5      r\R                  " SSS9r	\R                  " S5      r
S	rg
)MlProjectsModelsPatchRequesti  a  A MlProjectsModelsPatchRequest object.

Fields:
  googleCloudMlV1Model: A GoogleCloudMlV1Model resource to be passed as the
    request body.
  name: Required. The project name.
  updateMask: Required. Specifies the path, relative to `Model`, of the
    field to update. For example, to change the description of a model to
    "foo" and set its default version to "version_1", the `update_mask`
    parameter would be specified as `description`, `default_version.name`,
    and the `PATCH` request body would specify the new value, as follows: {
    "description": "foo", "defaultVersion": { "name":"version_1" } }
    Currently the supported update masks are `description` and
    `default_version.name`.
rv  r   r   Tr"  r,   r   N)r   r   r   r   r   r   r   r}  r   r   r  r!   r   r"   r#   r  r    s?      #//0FJ			q4	0$$$Q'*r"   r  c                   `    \ rS rSrSr\R                  " SS5      r\R                  " SSS9r	Sr
g	)
#MlProjectsModelsSetIamPolicyRequesti  au  A MlProjectsModelsSetIamPolicyRequest object.

Fields:
  googleIamV1SetIamPolicyRequest: A GoogleIamV1SetIamPolicyRequest resource
    to be passed as the request body.
  resource: REQUIRED: The resource for which the policy is being specified.
    See [Resource
    names](https://cloud.google.com/apis/design/resource_names) for the
    appropriate value for this field.
r  r   r   Tr"  r   NrD  r   r"   r#   r  r    rF  r"   r  c                   `    \ rS rSrSr\R                  " SS5      r\R                  " SSS9r	Sr
g	)
)MlProjectsModelsTestIamPermissionsRequesti"  a  A MlProjectsModelsTestIamPermissionsRequest object.

Fields:
  googleIamV1TestIamPermissionsRequest: A
    GoogleIamV1TestIamPermissionsRequest resource to be passed as the
    request body.
  resource: REQUIRED: The resource for which the policy detail is being
    requested. See [Resource
    names](https://cloud.google.com/apis/design/resource_names) for the
    appropriate value for this field.
r  r   r   Tr"  r   NrI  r   r"   r#   r  r  "  rK  r"   r  c                   `    \ rS rSrSr\R                  " SS5      r\R                  " SSS9r	Sr
g	)
%MlProjectsModelsVersionsCreateRequesti3  zA MlProjectsModelsVersionsCreateRequest object.

Fields:
  googleCloudMlV1Version: A GoogleCloudMlV1Version resource to be passed as
    the request body.
  parent: Required. The name of the model.
r  r   r   Tr"  r   N)r   r   r   r   r   r   r   googleCloudMlV1Versionr   r1  r!   r   r"   r#   r  r  3  s/     %112JAN  T2&r"   r  c                   :    \ rS rSrSr\R                  " SSS9rSrg)%MlProjectsModelsVersionsDeleteRequesti@  zA MlProjectsModelsVersionsDeleteRequest object.

Fields:
  name: Required. The name of the version. You can get the names of all the
    versions of a model by calling projects.models.versions.list.
r   Tr"  r   Nr(  r   r"   r#   r  r  @  s     
		q4	0$r"   r  c                   :    \ rS rSrSr\R                  " SSS9rSrg)"MlProjectsModelsVersionsGetRequestiK  zaA MlProjectsModelsVersionsGetRequest object.

Fields:
  name: Required. The name of the version.
r   Tr"  r   Nr(  r   r"   r#   r  r  K  r)  r"   r  c                       \ rS rSrSr\R                  " S5      r\R                  " S\R                  R                  S9r\R                  " S5      r\R                  " SSS	9rS
rg)#MlProjectsModelsVersionsListRequestiU  a  A MlProjectsModelsVersionsListRequest object.

Fields:
  filter: Optional. Specifies the subset of versions to retrieve.
  pageSize: Optional. The number of versions to retrieve per "page" of
    results. If there are more remaining results than this number, the
    response message will contain a valid value in the `next_page_token`
    field. The default value is 20, and the maximum page size is 100.
  pageToken: Optional. A page token to request the next page of results. You
    get the token from the `next_page_token` field of the response from the
    previous call.
  parent: Required. The name of the model for which to list the version.
r   r   r5   r,   rA   Tr"  r   Nr<  r   r"   r#   r  r  U  r  r"   r  c                       \ rS rSrSr\R                  " SS5      r\R                  " SSS9r	\R                  " S5      r
S	rg
)$MlProjectsModelsVersionsPatchRequestij  as  A MlProjectsModelsVersionsPatchRequest object.

Fields:
  googleCloudMlV1Version: A GoogleCloudMlV1Version resource to be passed as
    the request body.
  name: Required. The name of the model.
  updateMask: Required. Specifies the path, relative to `Version`, of the
    field to update. Must be present and non-empty. For example, to change
    the description of a version to "foo", the `update_mask` parameter would
    be specified as `description`, and the `PATCH` request body would
    specify the new value, as follows: ``` { "description": "foo" } ```
    Currently the only supported update mask fields are `description`,
    `requestLoggingConfig`, `autoScaling.minNodes`, and
    `manualScaling.nodes`. However, you can only update
    `manualScaling.nodes` if the version uses a [Compute Engine (N1) machine
    type](/ml-engine/docs/machine-types-online-prediction).
r  r   r   Tr"  r,   r   N)r   r   r   r   r   r   r   r  r   r   r  r!   r   r"   r#   r  r  j  s?    $ %112JAN			q4	0$$$Q'*r"   r  c                   `    \ rS rSrSr\R                  " SS5      r\R                  " SSS9r	Sr
g	)
)MlProjectsModelsVersionsSetDefaultRequesti  ay  A MlProjectsModelsVersionsSetDefaultRequest object.

Fields:
  googleCloudMlV1SetDefaultVersionRequest: A
    GoogleCloudMlV1SetDefaultVersionRequest resource to be passed as the
    request body.
  name: Required. The name of the version to make the default for the model.
    You can get the names of all the versions of a model by calling
    projects.models.versions.list.
r6  r   r   Tr"  r   N)r   r   r   r   r   r   r   'googleCloudMlV1SetDefaultVersionRequestr   r   r!   r   r"   r#   r  r    s0    	 -6,B,BClno,p)			q4	0$r"   r  c                   :    \ rS rSrSr\R                  " SSS9rSrg)!MlProjectsOperationsCancelRequesti  zqA MlProjectsOperationsCancelRequest object.

Fields:
  name: The name of the operation resource to be cancelled.
r   Tr"  r   Nr(  r   r"   r#   r  r    r)  r"   r  c                   :    \ rS rSrSr\R                  " SSS9rSrg)MlProjectsOperationsGetRequesti  z^A MlProjectsOperationsGetRequest object.

Fields:
  name: The name of the operation resource.
r   Tr"  r   Nr(  r   r"   r#   r  r    r)  r"   r  c                       \ rS rSrSr\R                  " S5      r\R                  " SSS9r\R                  " S\R                  R                  S9r\R                  " S	5      r\R                  " S
5      rSrg)MlProjectsOperationsListRequesti  a  A MlProjectsOperationsListRequest object.

Fields:
  filter: The standard list filter.
  name: The name of the operation's parent resource.
  pageSize: The standard list page size.
  pageToken: The standard list page token.
  returnPartialSuccess: When set to `true`, operations that are reachable
    are returned as normal, and those that are unreachable are returned in
    the [ListOperationsResponse.unreachable] field. This can only be `true`
    when reading across collections e.g. when `parent` is set to
    `"projects/example/locations/-"`. This field is not by default supported
    and will result in an `UNIMPLEMENTED` error if set unless explicitly
    documented otherwise in service or product specific documentation.
r   r   Tr"  r,   r5   rA   rB   r   N)r   r   r   r   r   r   r   r=  r   r7   r8   r9   r>  r?  rr   returnPartialSuccessr!   r   r"   r#   r  r    sj        #&			q4	0$##Ay/@/@/F/FG(##A&)"//2r"   r  c                   `    \ rS rSrSr\R                  " SS5      r\R                  " SSS9r	Sr
g	)
MlProjectsPredictRequesti  a)  A MlProjectsPredictRequest object.

Fields:
  googleCloudMlV1PredictRequest: A GoogleCloudMlV1PredictRequest resource to
    be passed as the request body.
  name: Required. The resource name of a model or a version. Authorization:
    requires the `predict` permission on the specified resource.
r  r   r   Tr"  r   N)r   r   r   r   r   r   r   googleCloudMlV1PredictRequestr   r   r!   r   r"   r#   r  r    r%  r"   r  c                      \ rS rSrSr " S S\R                  5      r " S S\R                  5      r\R                  " SS5      r
\R                  " S5      r\R                  " SS	S
S9r\R                  " S5      r\R                  " S5      r\R                  " S5      r\R                  " S5      r\R$                  " SSS9r\R                  " S5      r\R                  " S5      r\R                  " S5      r\R                  " S5      rSrg)StandardQueryParametersi  a  Query parameters accepted by all methods.

Enums:
  FXgafvValueValuesEnum: V1 error format.
  AltValueValuesEnum: Data format for response.

Fields:
  f__xgafv: V1 error format.
  access_token: OAuth access token.
  alt: Data format for response.
  callback: JSONP
  fields: Selector specifying which fields to include in a partial response.
  key: API key. Your API key identifies your project and provides you with
    API access, quota, and reports. Required unless you provide an OAuth 2.0
    token.
  oauth_token: OAuth 2.0 token for the current user.
  prettyPrint: Returns response with indentations and line breaks.
  quotaUser: Available to use for quota purposes for server-side
    applications. Can be any arbitrary string assigned to a user, but should
    not exceed 40 characters.
  trace: A tracing token of the form "token:<tokenid>" to include in api
    requests.
  uploadType: Legacy upload protocol for media (e.g. "media", "multipart").
  upload_protocol: Upload protocol for media (e.g. "raw", "multipart").
c                   $    \ rS rSrSrSrSrSrSrg)*StandardQueryParameters.AltValueValuesEnumi  zData format for response.

Values:
  json: Responses with Content-Type of application/json
  media: Media download with context-dependent Content-Type
  proto: Responses with Content-Type of application/x-protobuf
r   r   r   r   N)	r   r   r   r   r   jsonmediaprotor!   r   r"   r#   AltValueValuesEnumr    s     DEEr"   r  c                        \ rS rSrSrSrSrSrg)-StandardQueryParameters.FXgafvValueValuesEnumi  zFV1 error format.

Values:
  _1: v1 error format
  _2: v2 error format
r   r   r   N)r   r   r   r   r   _1_2r!   r   r"   r#   FXgafvValueValuesEnumr    s     
B	
Br"   r  r   r   r,   r  )defaultrA   rB   rC   rD   rE   TrF   rG   rH   r   r   N)r   r   r   r   r   r   rX   r  r  rZ   f__xgafvr   access_tokenaltcallbackfieldsr   oauth_tokenrr   prettyPrint	quotaUsertrace
uploadTypeupload_protocolr!   r   r"   r#   r  r    s    4
9>> 
inn    !8!<(&&q),0!VD#""1%(  #&a #%%a(+&&q$7+##A&)



#%$$R(*))"-/r"   r  r  z$.xgafvr  1r  2r5  zoptions.requestedPolicyVersionN)r   
__future__r   apitools.base.protorpcliter   r   apitools.base.pyr   r   packager)   r	   r3   r<   r]   rb   ri   rk   rl   rw   r}   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r  r	  r'  r4  r   rT  rm  rq  ru  ry  r{  r  r  r  rr  r  r_   r  rd   rv  r  r  r  r  r  r  r  r  rC  r  r]  r^  r  r  r!  r   r   r)  r6  rN  r;  r  rD  rK  rL  rX  rY  rZ  r[  r\  r]  r^  rt  rx  rz  r_  r`  r   r|  r  r  r   r  r  r  r  r  r  r  r  r  r  r  r  r!  r'  r+  r/  r3  r9  r;  rA  rC  rH  rM  rO  rQ  rS  rU  rY  r[  r]  r`  rc  rf  ri  rm  ro  rq  rt  rv  ry  r|  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  r  AddCustomJsonFieldMappingAddCustomJsonEnumMappingr  r   r"   r#   <module>r     s   ' < % ( :T	)) :TzV):): V"07y'8'8 07fH	0A0A H$H!2!2 $HNCY->-> C"-iN_N_ --)J[J[ -"J	(9(9 J ,I,=,= ,&3i&7&7 3:7	 1 1 :7z#9;L;L # 9J9J '):K:K ' .)*;*; .$/I-- /M9#4#4 MzS9#4#4 zSz*	 1 1 *(i&7&7 (#I-- #:<I$5$5 <+Py'8'8 +P\I)i&7&7 I)X1y'8'8 1"
py'8'8 
p	C9;L;L 	C4y'8'8 4GC)*;*; GCT	+i>O>O 	+T1	(9(9 T1nRI4E4E R4kO** kO\
+i&7&7 
++9+<+< +
+	(9(9 
+@i.?.? @
Ly/@/@ 
LM):): ML	(9(9 L
P)*;*; 
P	"i// 	"
E9#4#4 
E(!2!2 ("	"y'8'8 	"F	 1 1 F<\49,, \4~f)"3"3 f2%Y5F5F 2%j(+yGXGX (+Vsi6G6G s-Y.. -&13I4E4E 13hO1B1B O8M@y'8'8 M@`M79#4#4 M7`	<I$5$5 	<X)Y%6%6 X)v.i&7&7 ."1*9#4#4 1*h/)*;*; />.%i// .%by'8'8 
Hy/@/@ 
HG?	 1 1 G?T<i.?.? <Pi&7&7 P,3i&7&7 3"H9,, "HJ"c!2!2 "cJ$9+<+< $6R8i.?.? R8j3)BSBS 3
2y?P?P 
2%Y=N=N %'i>O>O '3PYPaPa 32YM^M^ 24	HYHY 4O9+<+< O"O)*;*; O  L9+<+<  LFn)9#4#4 n)bOBI$5$5 OBd):): 5/9,, 5/p)I$5$5 )"a:Y.. a:H	RY%6%6 R6%Y.. %:=	 1 1 =DT"** T"nKG	)) KG\(Y%6%6 ("
89+<+< 
88I,=,= 88i.?.? 8$i8!2!2 i8X)++ 0%i'' 0%f!#Y&& !#H1y00 11!2!2 1
1)"3"3 
1
3)"3"3 
35	(9(9 541y00 13	 1 1 36(!2!2 (25	(9(9 5 5i.?.? 5"1I$5$5 13Y%6%6 3*11B1B 11i.?.? 1%i.?.? %"1i.?.? 119+<+< 13I,=,= 31I<M<M 11YEVEV 1
1i6G6G 
1
3I4E4E 
31I4E4E 111B1B 13y?P?P 33)2C2C 3
1)2C2C 
1
3Y5F5F 
3
3I$5$5 
31I$5$5 15)*;*; 541!2!2 13)"3"3 3*(9#4#4 (,5)*;*; 5 5	0A0A 5"
3I,=,= 
31I,=,= 11):): 13)*;*; 3*(9+<+< (01	0A0A 1 1	(9(9 11Y%6%6 13i&7&7 301y00 1<.i// <.~ 	 " "Z4  ! !114>  ! !114>  " "%'GIik  " "')IKkmr"   