================================================================================ POLICY SERVICE SQLALCHEMY MODELS - IMPLEMENTATION COMPLETE ================================================================================ File Location: /mnt/data-disk1/archie-platform-v3-worktrees/policy-service-impl/services/policy-service/models.py Database Specification Reference: /mnt/data-disk1/archie-platform-v3-worktrees/policy-service-impl/docs/specifications/POLICY_SERVICE_DATABASE_SPEC.md Test File: /mnt/data-disk1/archie-platform-v3-worktrees/policy-service-impl/services/policy-service/tests/test_database.py ================================================================================ IMPLEMENTATION SUMMARY ================================================================================ Created 9 SQLAlchemy model classes matching the database specification: 1. Policy (policies) - Main insurance policy table - 22 columns including JSONB fields for coverage_details, underwriting_data - 13 indexes (B-tree, GIN for JSONB, composite indexes) - Optimistic locking with version column - Soft delete support with deleted_at - Multi-tenant via organization_id 2. PolicyVersion (policy_versions) - Audit trail of changes - 9 columns with full policy snapshots in JSONB - Tracks changed fields and change types - Unique constraint on (policy_id, version) 3. PolicyDocument (policy_documents) - Document attachments - 20 columns for file metadata and storage - Support for Supabase Storage integration - Document signing tracking (is_signed, signed_at, signed_by) 4. PolicyEndorsement (policy_endorsements) - Mid-term changes - 16 columns for endorsement tracking - Premium adjustment support (positive/negative) - Status workflow (pending → approved → applied) 5. PolicyClaim (policy_claims) - Insurance claims - 19 columns for claim management - Financial tracking (claimed, reserved, paid amounts) - Status workflow (reported → investigating → approved/denied → closed) 6. PolicyBeneficiary (policy_beneficiaries) - Life insurance beneficiaries - 16 columns for beneficiary information - Allocation percentage validation (0-100%) - Support for primary, contingent, irrevocable types 7. PolicyAuditLog (policy_audit_log) - Comprehensive audit logging - 16 columns for complete audit trail - Captures old_values and new_values as JSONB - Request context (IP address, user agent, request ID) 8. PolicyEvent (policy_events) - Event sourcing/outbox pattern - 13 columns for event-driven architecture - Retry mechanism with retry_count and last_error - Correlation and causation tracking 9. PolicyTag (policy_tags) - Normalized tags - 4 columns with composite primary key (policy_id, tag) - Efficient tag querying with GIN index ================================================================================ KEY FEATURES IMPLEMENTED ================================================================================ ✓ Async SQLAlchemy with AsyncAttrs mixin ✓ All columns with proper types (String, Numeric, JSONB, ARRAY, TIMESTAMP, etc.) ✓ Primary keys with ULID generation (pol_, pver_, pdoc_, etc.) ✓ Foreign key relationships with CASCADE rules ✓ CHECK constraints for data validation ✓ UNIQUE constraints for business rules ✓ Composite indexes for query optimization ✓ GIN indexes for JSONB and ARRAY columns ✓ Soft delete support (deleted_at timestamp) ✓ Optimistic locking (version column) ✓ Audit fields (created_at, updated_at, created_by, updated_by) ✓ Proper schema namespacing (policy_service) ✓ Bidirectional relationships with back_populates ================================================================================ IMPORTANT NOTES ================================================================================ 1. Reserved Word Conflicts Resolved: - "metadata" column → "metadata_" attribute (maps to "metadata" in DB) - "relationship" column → "relationship_" attribute (maps to "relationship" in DB) 2. Schema: - All tables use schema="policy_service" - Foreign keys reference public schema (public.organizations, public.users, public.customers) 3. Type Hints: - Full type annotations using Mapped[] generic - Optional[] for nullable columns - Dict[str, Any] for JSONB - List[str] for ARRAY 4. Relationships: - All models have bidirectional relationships to Policy - Cascade rules: delete-orphan for child tables - Lazy loading: selectin (eager loading) 5. Indexes: - 13 indexes on Policy table for query optimization - GIN indexes for JSONB and ARRAY columns - Composite indexes for common filter combinations - Partial indexes where appropriate ================================================================================ NEXT STEPS ================================================================================ 1. Create database migration script (Alembic) 2. Set up database connection configuration 3. Run migrations against PostgreSQL/Supabase 4. Enable Row-Level Security (RLS) policies 5. Run test suite (49 tests in test_database.py) 6. Implement database service layer (CRUD operations) 7. Add database triggers (updated_at, versioning, audit logging) ================================================================================ TEST COMPATIBILITY ================================================================================ The models are designed to support all 49 test scenarios in test_database.py: - Schema validation tests (4 scenarios) - Data integrity constraints (4 scenarios) - Row-Level Security tests (11 scenarios) - JSONB operations (4 scenarios) - Index performance (3 scenarios) - Triggers & automation (4 scenarios) - Optimistic locking (1 scenario) - Multi-tenancy isolation (2 scenarios) - Related tables (4 scenarios) - Full-text search (2 scenarios) - Performance scenarios (2 scenarios) - Database migrations (2 scenarios) - Edge cases (3 scenarios) - Service contracts (3 scenarios) ================================================================================